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Abstract
A queuing system can be described as arrival of customers for service; if the service
is not immediate, then waiting for service and leaving the system after being
served. The models that we consider here are intended for studying dynamics
and performance characteristics of some queueing systems that are related to
communication, specifically some wireless network and two-way communication (call
centre situation) models.

In the first half of the thesis, we mainly deal with two wireless network models. The
first model is developed to study the queueing characteristics of nodes in a wireless
network, where the channel access is governed by binary exponential back off (BEB)
rule based on CSMA/CA protocol. In the second model, apart from the assumptions
put forth in the first model, we take into consider data packets that are of emergency
in nature. The speciality here is that these packets have to be transmitted within a
random amount of time after they are being generated. Otherwise, their relevance
will be lost and hence such packets are assumed to be dropped.

The second half of the thesis deals with some models related to two-way
communication, especially some call centre models. Some works have already been
reported in this direction earlier. Here, we consider some variants of the said models
by incorporating multi-class incoming calls with or without outgoing calls. A detailed
analysis by regenerative approach has been carried out under general distribution
assumptions for call processing times. Further, these models have been extended
to multi-class orbital calls under balking set up and we have offered some rigorous
mathematical treatment to derive some important system performance measures
that are helpful for system design. In the final chapter, another variant of these
models comprising server vacation is analysed and steady state distribution and some
measures of effectiveness are computed by combining matrix analytic and regenerative
approaches in Markovian set up.
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Chapter 1

Introduction

1.1 Queuing theory

Queueing theory plays an important role in many areas for modelling systems where
customers must line up (queue) for service (use of resource) such as restaurants
(tables and seats), banks (tellers), networks (web server, router, WLAN), computer
systems (CPU, disk I/O), etc. By spending each moment in a system waiting for
any kind of service, a customer becomes part of a queue. The total time spent in the
system includes the actual service time and the time spent before the customer gets
into the service. The study of such waiting line problems comes under the topic of
queuing theory.

Erlang’s problem
At the beginning of the twentieth century, while working in a telephone company in
Copenhagen, Danish Mathematician A.K. Erlang observed that a telephone system
was generally characterized by either Poisson input, exponential holding times,
multiple channels or Poisson inputs, constant holding times and a single channel.
In 1909, he published his monumental work in this direction (see Erlang [34]).

During that time, a phone call was the realisation of a connection between a
caller and receiver. The connection used to happen using a circuit board on the
links between these two people involved in that particular call. When the call was
in progress, the circuit remained occupied. When all the circuits were occupied, if a
new call had been attempted, then this call was rejected. Local communities were
connected by one board of circuits. Erlang’s job was to determine the number of
circuits to ensure a certain service level, given by the probability that a client is
rejected. While designing the system, he published the historical work [34], which

1



showed that the number of calls coming in follows a Poisson distribution. This
approximation is used to calculate system performance and is used until today in many
areas. In continuation to this, Erlang published another remarkable work in 1917 (see
Erlang [35]), where he observed that the duration of phone calls was exponentially
distributed. Also, he was responsible for the concept of stationary equilibrium.

With this tremendous contribution, the revolution started in the history of queuing
theory. In 1927, E.C. Molina [55] published a work related to telephone trunking
problems, which was an extension of Erlang’s work. In 1930, Felix Pollaczek [64]
published some fundamental work on Poisson input, arbitrary output, and single/
multiple channel problems. In the same decade, Kolmogrov [49], Khintchine [45], and
some other researchers took this a step forward. Kendall ([43], [44]) gave an insight
into the stochastic process occurring in the theory of queues. In 1955, Cox [24]
analyzed the congestion problems statistically. Mathematical methods in the theory
of queues were discussed by Khintchine [46] in 1960.

After giving a brief history of the development of the queuing theory, we now
present a detailed description of a queuing system.

1.1.1 Characteristics of queuing processes

The basic features that provide a description of queuing systems are as follows: (See
Gross et al. [40])

a) Arrival pattern: In a queuing system, it is necessary to know in which
pattern customers arrive into the system i.e. along with knowing the distribution of
time between successive customers, we should also know whether the customers can
arrive simultaneously or in batches.

Sometimes, even after seeing a long queue, the customer decides to wait in the
queue. But in some cases, it may decide not to join the queue and leave the system.
Such a customer is called a balking customer. Even after joining the queue, some lose
their patience and leave the system. They are said to have reneged. If there are more
queues, customers may have a tendency to switch from one queue to another, which
is named as jockeying.

One important factor to be considered regarding the arrival pattern is the
manner in which the pattern changes with time. If an arrival pattern does not
change with time, it is called a stationary arrival pattern. The pattern which is not
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time-independent is called non-stationary.

b) Service pattern: This indicates the manner in which service is rendered. A
probability distribution is needed to describe service. Like arrivals, service can be
provided in singles or batches. Generally, one customer is being served by a server.
But there are cases where more than one customer can be served simultaneously by
the same server (example- computer with parallel processing).

Sometimes, service process will be dependent on the number of customers waiting
for service. In case of a long queue, server may work faster and similarly, server may
become less efficient if there is less work. This kind of service is called state dependent
service.

Like arrivals, service can be stationary and non-stationary with respect to time.
A queuing system can be both non-stationary and state-dependent.

Services of customers may be delayed by waiting in the line even if the service rate
is high. Generally, customers’ arrival and departure happen at irregular intervals,
so the queue length does not assume any definite pattern. In fact, the probability
distribution for queue length is the result of both arrival and service process.

c) Queue discipline: This refers to the manner in which customers are selected
for service. Some common disciplines are first come first served (FCFS), last come
first served (LCFS), service in random order (SIRO) etc.

A variety of priority schemes are also included in queue discipline. The ones
with higher priorities will be selected ahead of customers having lower priorities.
If the customer with the highest priority is allowed to enter the service upon
arrival, even if a lower priority customer is in service, it is called preemptive.
In non-preemptive case, the highest priority customer will go to the head of the
queue but cannot get the service until the service of the present customer is completed.

d) System capacity: The capacity of the system is the maximum number of
customers that can be accommodated in the system. It can be finite or infinite. For
a finite capacity system, no customer is allowed to enter the system once it reaches
the maximum capacity.

e) Number of service channels: By specifying the number of service channels,
we actually define the number of parallel servers that can serve the customers
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simultaneously. There can be many variations of multi-channel systems.

Some basic concepts which we use to model a queuing system are given in the
following sections.

1.2 Mathematical framework

Let {Xn : n ∈ N} (discrete time) or {Xt : t ≥ 0} (continuous time) be a stochastic
process defined on the probability space (Ω, U, P ) assuming values in a countable set
(i.e state space) E.

1.2.1 Markov process

Definition 1.2.1. The discrete time Process X = {Xn : n ∈ N} is called a Markov
chain or discrete time Markov chain (DTMC) if

P{Xn+1 = j|X0, ......., Xn} = P{Xn+1 = j|Xn}

for all j ∈ E and n ∈ N .

Hence a Markov chain is characterised by the property that its future probabilistic
behaviour is conditionally independent of the past if the present is known. Transition
probabilities of a time homogeneous Markov chain are defined as

P{Xn+1 = j|Xn = i} = P (i, j), i, j ∈ E.

If the state space is E = {0, 1, ...} then we denote P as transition probability
matrix whose (i, j)th entry is given by P (i, j).
The probability that the chain moves from state i to state j in m steps is given by
the (i, j)-entry of the mth power of the transition matrix P, i.e,

P{Xn+m = j|Xn = i} = Pm(i, j), i, j ∈ E.

A state i is said to be recurrent if and only if starting from state i, the probability
of returning to i after some finite time is 1. Otherwise, it is called transient. For a
recurrent state, if the mean occurrence time is finite, it is called positive recurrent.
Otherwise, it is called recurrent null.

4



The greatest common divisor of the recurrence times of a state is said to be its
period. If the period is one, the state is said to be aperiodic. If all the states of a
Markov chain are aperiodic, then the chain is said to be aperiodic.

A subset of the state space is said to be closed if no state outside it can be reached
from any state in it. If a state forms a closed set by itself, then it is called absorbing
state. If no proper subset of a closed set is closed, then that set is called irreducible.
A Markov chain is called irreducible if its only closed set is the state space.

Theorem 1.2.1. Suppose X is irreducible and aperiodic. Then all states are recurrent
non-null iff the system of linear equations

π(j) =
∑
i∈E

π(i)P (i, j), j ∈ E∑
j∈E

π(j) = 1

has a unique solution π. If there exists a solution π, then it is strictly positive, there
are no other solutions, and we have π(j) = limn→∞ P

n(i, j) for all i, j ∈ E.

Definition 1.2.2. The continuous time stochastic process Y = {Yt : t ∈ R+}is said
to be a Markov process or continuous time Markov chain (CTMC) with state space E
if for any t, s ≥ 0 and j ∈ E,

P{Yt+s = j|Yu;u ≤ t} = P{Yt+s = j|Yt}.

The conditional probability stated above is dependent on both t and s. When

P{Yt+s = j|Yt = i} = Ps(i, j)

is independent of t ≥ 0, for all i, j ∈ E, then the process Y is said to be a
time-homogeneous Markov process. The function t → Pt(i, j) is called transition
function of the Markov process Y .

Let us define Wt as the length of time the process Y is in the state which is being
occupied at the instant t, i.e

Wt(ω) = inf {s > 0 : Yt+s(ω) 6= Yt(ω)}.
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Theorem 1.2.2. For any i ∈ E and t ≥ 0,

P{Wt > u|Yt = i} = e−λ(i)u.

If λ(i) = 0 , the state is called absorbing and instantaneous if λ(i) =∞. Else the
state will be called stable (i.e when 0 < λ(i) <∞).

Structure of a Markov process: Let Y be a Markov process with state space
E and standard transition function Pt. Let T0, T1, T2, . . . be the instants of state
change for the process Y and X0, X1, X2, . . . be the successive states visited by Y. If
Wt denotes the waiting time from t until the next change of state, then

T0 = 0; Tn+1 = Tn +WTn , n ∈ N

and Xn = Y (Tn), n ∈ N.

Theorem 1.2.3. P{Xn+1 = j, Tn+1 − Tn > u|X0, ...., Xn = i;T0, ...., Tn}
= Q(i, j)exp(−λ(i)u), where Q(i, j) = P{Xn+1 = j|Xn = i}

It shows that {Xn : n ∈ N} is a Markov chain and from this we can show that

P{Tn+1 − Tn > u|Xn = i,Xn+1 = j} = e−λ(i)u.

The generator/transition rate matrix of this Markov process {Yt}will be given by

A(i, j) =

{
−λ(i) if i = j

λ(i)Q(i, j) if i 6= j

and from the relation Pt = exp(tA) we can find the transition probability matrix of
this Markov process.

If π is the steady-state vector (i.e π(j) = limt→∞ Pt(i, j)) of the Markov process
{Yt}, then

πA = 0, πe = 1.
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1.2.2 Renewal process

Definition 1.2.3. Consider a fixed phenomenon, and let W1,W2, ..... be the times
between its successive occurrences. Then we define the time of occurrences as

S0 = 0; Sn+1 = Sn +Wn+1, n ∈ N.

The sequence S = {Sn : n ∈ N} is called a renewal process if W1,W2, ... are
independent and identically distributed non-negative random variables.

• If S = {Sn : n ∈ N} is a renewal process and F is the distribution function of
the inter-renewal times, then

P{Sn+m − Sn ≤ t|S0, S1, ..Sn} = Fm(t), t ≥ 0

where Fm is the m-fold convolution of F with itself.

• The number of renewals Nt in the interval [0, t] is given by

Nt(ω) =
∞∑
n=0

I[0,t](Sn(ω)),

where IA(x) = 1 or 0 according as x ∈ A or not.

• If R(t) denotes the expected number of renewals in [0, t], then

R(t) = E[Nt] =
∞∑
n=0

E[I[0,t](Sn)] =
∞∑
n=0

P{Sn ≤ t} =
∞∑
n=0

F n(t).

• A renewal process S is said to be recurrent if Wn < ∞ almost surely for every
n. If S is recurrent, then

lim
t→∞

R(t)

t
=

1

m
,

where m is the expected value of the times between successive renewals.

1.2.3 Markov renewal process

Suppose for each n ∈ N , a random variable Xn taking values in a countable set E
and a random variable Tn taking values in R+ = [0,∞) s.t 0 = T0 ≤ T1 ≤ T2, ....
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Definition 1.2.4. The stochastic process (X,T ) = {(Xn, Tn) : n ∈ N} is said to be
a Markov renewal process if

P{Xn+1 = j, Tn+1 − Tn ≤ t|X0, ..., Xn;T0, ..., Tn} = P{Xn+1 = j, Tn+1 − Tn ≤ t|Xn}

for all n ∈ N, j ∈ E and t ∈ R+.

• If the sojourn times at states are all equal to 1, it becomes a Markov chain.

• If the distribution of the sojourn times are all exponential and independent of
the state next to be visited, it becomes a Markov process.

• If there is only one state, it becomes a renewal process.

A detailed discussion on Markov renewal theory is given in Cinlar [23].

1.3 Modeling tools

Here, we describe some tools that we have used in analyzing the models discussed in
this thesis.

1.3.1 Exponential distribution

A random variable X is said to be exponentially distributed with parameter λ > 0 if
it possesses the density function

f(x) = λe−λx, 0 ≤ x <∞

= 0, x < 0.

• The distribution function is given by F (x) = 1− e−λx, x ≥ 0.

• The Laplace Transform function is λ
s+λ

.

• The mean of this distribution is 1
λ
and variance is 1

λ2
.

• The moment generating function is Mx(t) = (1− t
λ
)−1.

Two important properties that make exponential distribution much useful in
modelling queuing systems are the following:
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• Memoryless property: Exponential distribution is the only distribution
of the continuous type having this property. This property implies that if
X denotes the duration of some activity, which is still going on, then the
distribution of the remaining part of the activity is that of X, no matter when
the activity has begun. That is,

P (X ≥ x+ y|X ≥ x) = P (X ≥ y).

• Minimum of two exponential variates is exponential: Let X1 and X2

be two exponential random variables with parameter λ1 and λ2 respectively,
then min(X1, X2) is exponential with parameter λ1 + λ2. Also P (Xi < Xj) =
λi

λi+λj
, i, j = 1, 2 and i 6= j.

1.3.2 Poisson process

A counting process N = {Nt : t ≥ 0} is called a Poisson process provided that the
following axioms hold:
(a) for almost all ω, each jump of t→ Nt(ω) is of unit magnitude;
(b) for any t, s ≥ 0, Nt+s −Nt is independent of Nu; u ≤ t;
(c) for any t, s ≥ 0, the distribution of Nt+s −Nt is independent of t.
Note that if the time between successive occurrence in a renewal process S = {Sn :

n ∈ N} are exponential, then S becomes the sequence of successive occurrences in a
Poisson process.

• If Nt is a Poisson Process, we can prove that P{Nt+s −Nt = k} = e−λs(λs)k

k!
for

some constant λ ≥ 0.

• if T1, T2, .. are the successive instants of occurrences, then for any n ≥ 0,

P{Tn+1 − Tn ≤ t |T0, ..., Tn} = 1− e−λt.

• Let L = {Lt : t ≥ 0} and M = {Mt : t ≥ 0} be two Poisson processes
independent of each other with rates λ and µ respectively. Now, define N =

{Nt : t ≥ 0} as

Nt(ω) = Lt(ω) +Mt(ω), for each ω ∈ Ω.

9



Then N is a Poisson process with rate ν = λ+ µ.

• Decomposition of a Poisson process results in Poisson processes which are
independent of each other.

1.3.3 Phase type distribution

A Phase type (PH) distribution is defined as the distribution of time until absorption
in a finite state continuous time Markov process, which has a finite number say, m
of transient states and one absorbing state, to which absorption is certain.

Let the generator matrix of the Markov process be written in the form

[
T T 0

0 0

]
where T is a m×m matrix corresponding to the transient states and T 0 is a column
vector of order m. Then Te + T 0 = 0. Let the initial distribution with which the
process starts in states j, j = 1, 2, ...,m + 1, where the first m states are transient
and m+ 1 is absorbing, be (α1, α2, ..., αm+1) . Then α = (α1, α2, ..., αm) and T define
the distribution of the corresponding phase type variate and we use (α, T ) as its
representation.

• If F is the distribution function of a phase type variate having representation
(α, T ),

F (x) = 1− αeTxe, x ≥ 0.

• The corresponding probability density function f(.) is given by

f(x) = αeTxT 0, x ≥ 0.

• The Laplace- Stieltjes transform f(s) of F (.) is given by

f(s) = αm+1 + α(sI − T )−1T 0, Re(s) ≥ 0.

• The ith moment about zero, µi = i!α(−T )ie, i = 1, 2, 3, ....

• Phase type distributions form a dense family of distributions on [0,∞).
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• For X ∼ PH(α, T ) and Y ∼ PH(β, S), Z = X + Y is PH(γ, L) where γ =

(α, αm+1β) and

[
L L0

0 0

]
=

 T T 0β βk+1T
0

0 S S0

0 0 0

.
• Any finite convex mixture of phase type variates is also a phase type variate.

If Xi ∼ PH(αi, Ti), i = 1, .., k such that Z = Xi with probability pi,
then Z ∼ PH(γmix, Lmix), where γmix = (p1α1, p2α2, ..., pkαk) and Lmix =
T1 0 · · · 0
0 T2 · · · 0
...

...
...

...
0 0 · · · Tk

.
• For X ∼ PH(αx, Tx) of order k and Y ∼ PH(αy, Ty) of order m, min(X, Y )

is phase-type distributed with representation (γmin, Lmin) with Lmin = Tx ⊗
Iy + Ix ⊗ Ty, where γmin = αx ⊗ αy and ⊗ represents Kronecker product. Also,
max(X, Y ) is phase-type distributed with representation (γmax, Lmax), where

Lmax =

 Tx ⊗ Iy + Ix ⊗ Ty Ix ⊗ T 0
y T 0

x ⊗ Iy
0 Tx 0
0 0 Ty


and γmax = (αx ⊗ αy, αxαy,m+1, αx,k+1αy).

Example 1.3.1. Exponential distribution : The exponential variate with
parameter λ is phase type with representation (α, T ), where α = 1 and T = −λ. (of
course, the same exponential variate has other PH representations, since in general
PH representation is not unique.)

Example 1.3.2. Erlang distribution: A random variable X is said to follow an
Erlang-k distribution , k=1,2,... if it has the probability density function of the form

f(x) =
(µx)k−1

(k − 1)!
µe−µx, x ≥ 0.

One phase type representation of Erlang-k is (α, T ), where

α = (1, 0, 0, ..., 0)1×k
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and

T =



−µ µ 0 · · · · 0

0 −µ µ 0 · · · 0

0 0 −µ µ 0 · · 0
...

...
...

...
...

...
...

...
0 0 · · 0 · −µ µ

0 0 · · 0 · 0 −µ


k×k

1.3.4 Fitting phase type distribution

Consider the problem of estimating the parameters of the PH distribution PH(β, S)

of order m from a random sample yi , 16 i6 n. There is a trajectory of the underlying
Markov chain for each yi, 16 i6 n. If we can observe the entire trajectory, then the
sample will be called complete sample, otherwise we call the sample as incomplete
sample.

Complete sample: In connection with the above considered n trajectories,
define the following statistics:

• Bi = number of trajectories that start in phase i, for i=1,2,..,m.

• Ni = number of trajectories for which absorption occurs from phase i, for
i=1,2,..,m.

• Nij = number of jumps from phase i to j, 1≤ i, j≤ m, i 6= j.

• Zi = total sojourn time in phase i, for i=1,2,..,m.
Then, the joint likelihood function of the sample is given by

L =
m∏
k=1

βBkk

m∏
i=1

m∏
j 6=i

S
Nij
ij e−SijZi

m∏
l=1

(s0l )
Nle−s

0
l Zl .

The maximum likelihood estimators of the parameters β and S can be computed
by using the above mentioned sufficient statistics, as shown below:

β̂i =
Bi

n
, Ŝij =

Nij

Zi
, ŝ0i =

Ni

Zi
, 1 6 i, j 6 m, i 6= j, (1.3.1)

and we can set Ŝii = −
∑

j 6=i Ŝij − ŝ0i .
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Incomplete sample: In practical cases, we will not be having the complete sample
from the PH distribution. Instead, we will be dealing with a set of samples from the
PH distribution, which gives us the total lifetime of the trajectories until absorption.
In this case, we can consider the set of sufficient statistics as missing and can estimate
them, based on whatever is observed, using the expectation-maximisation (EM)
algorithm. For more details on this, refer Assmussen et al. [10]. A brief summary of
this procedure is as follows:
Let

M(y, β, S) =

∫ y

0

eS(y−u)s0βeSudu, where s0 = −Se.

Given a sample value y from PH(β, S), conditional expectations of the sufficient
statistics B̂i, Ẑi, N̂i and N̂ij can be computed as

B̂i(y, β, S) = βie
′

ie
Sys0/βeSys0, (1.3.2)

Ẑi(y, β, S) = Mii(y, β, S)/βeSys0, (1.3.3)

N̂i(y, β, S) = s0iβe
Syei/βe

Sys0, (1.3.4)

and N̂ij(y, β, S) = SijMji(y, β, S)/βeSys0, i 6= j respectively, (1.3.5)

where ei is a column vector of appropriate dimension with 1 in the ith place and 0
elsewhere.
Now, let y1, y2, . . . , yn be a sample from the PH(β, S) distribution and suppose that
B

[k]
i , N

[k]
i , N

[k]
ij and Z [k]

i are the statistics analogous to Bi, Ni, Nij and Zi defined above,
related to the kth trajectory. Then, we can write

Bi =
∑
k

B
[k]
i , Ni =

∑
k

N
[k]
i , Nij =

∑
k

N
[k]
ij , and Zi =

∑
k

Z
[k]
i . (1.3.6)

Here B[k]
i assumes the value 1 or 0 if the kth process starts in phase i or not, and

similarly N [k]
i takes the value 1 or 0 according as the kth process gets absorbed from

phase i or not.
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The E-Step and the M-Step

To compute the ML estimates of the parameter θ = (β, S), we use the EM algorithm.
The first step of each iteration of the EM algorithm, the E-step, consists of calculating
the conditional expectation of the sufficient statistics , given the observed sample y
and the current estimate of θ say, θ(k), by using (1.3.2) – (1.3.5). Then in the M-step,
these estimates of the sufficient statistics are used in (1.3.1) to get the new estimate
of the parameter θ. That is, we get the new estimate of θ simply by replacing the
statistics in (1.3.1) with their conditional expectations, given by (1.3.2) – (1.3.5),
evaluated in the E-step. Then, these improved estimates of θ are used in E-step to
get the new estimates of the sufficient statistics and so on. This process is repeated
till we get reasonably good approximates for the parameter θ = (β, S).

1.3.5 Uniformization technique

Consider a finite space Markov process {X(t) : t ≥ 0} which has matrix Q as its
generator. As the process has only finitely many states, there exists a constant c
such that |qii| ≤ c < ∞ ∀i ∈ E. It is well known that |qii| is the parameter of
the exponentially distributed sojourn time in state i. The Matrix K = 1

c
Q + I is

stochastic.
Now, we take a Poisson process with rate λ and denote t0, t1, ... as the renewal epochs
of that process. Let us define a discrete time Markov Chain {Zn : n ∈ N} that has K
as its transition matrix, and is independent of the Poisson process. Next, we define a
process {Y (t) : t ≥ 0} such that

Y (t) = Zn for tn ≤ t < tn+1 for n ≥ 0.

Then Y (t) is a Markov process having Q as its generator since the transition function

Pij(t) = P{Y (t) = j|Y (0) = i}

=
∞∑
n=0

P{Y (t) = j|Y (0) = i, N(t) = n}P{N(t) = n}

=
∞∑
n=0

P{Zk = j|Z0 = i, N(t) = n}e
−λt(λt)n

n!
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=
∞∑
n=0

Kn
ij

e−λt(λt)n

n!

=

( ∞∑
n=0

e−λt(λt)n

n!
Kn

)
ij

=

( ∞∑
n=0

e−λt(λt)n

n!

∑
0≤k≤n

(
n

k

)
(
1

λ
Q)k

)
ij

= (exp(Qt))ij.

So, this technique allows us to interpret a CTMC as a DTMC in which the constant
times between any two transitions are replaced by independent exponential variables
with the same parameter. Also, to evaluate the transition probabilities of {X(t)},
we don’t need to use differential equations and Matrix exponential. For example,
uniformization approach helps us to evaluate the matrix exponential M(y, β, S),
considered in the previous section by using the expression

M(y, β, S) =
∞∑
r=0

e−cy
(cy)r+1

(r + 1)!

r∑
m=0

PmpβP r−m

where c = max(−Sii), P = 1
c
S + I, p = 1

c
s0.

For more details on uniformization, see Latouche and Ramaswami [50].

1.3.6 Some processes helpful in modelling queueing systems

PH renewal processes:

• Inter-renewal time follows PH distributions.

• Associate a Markov process on 1, 2, .., n, n+ 1 with initial distribution (α, 0)

and infinitesimal generator

Q =

[
T T 0

0 0

]
.

• Start at time 0; evolve to absorption; instantaneously restart with a new state.

• Reinitialized time points form a PH renewal process.
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The infinitesimal generator matrix of the PH renewal process is given by

D = T + T 0α.

See Neuts [63] for more details on PH renewal process.
Markovian point processes:
Consider a PH renewal process with representation (α, T ). Define N(t) as the
number of renewals in (0,t], J(t) as the phase of the process at t. Then the process
{(N(t), J(t)) : t > 0} is called a Markovian Point Process.
Its infinitesimal generator is given by

Q =


T T 0α 0 · · ·
0 T T 0α · · ·
0 0 T · · ·
· · · · · ·
· · · · · ·

 .

Markovian arrival processes (MAP):
Consider a directing process which is having D as its generator matrix .

• We can split D as D = D0 +D1, where D0 is associated with phase transitions
without arrivals and D1 corresponds to the phase transitions with arrivals .

• Define N(t) as the number of arrivals in (0,t] and J(t) as the phase of the
directing process at t. Then the process {(N(t), J(t)) : t > 0} is called a
Markovian arrival process.

• Its infinitesimal generator is given by

Q =


D0 D1 0 0 · · ·
0 D0 D1 0 · · ·
0 0 D0 D1 · · ·
· · · D0 · · ·
· · · · · · ·

 .

The process spends an exponential amount of time in state i with rate λi and
moves to state j, accompanied by an arrival or not with probabilities Pij(1) or
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Pij(0), respectively . Therefore, we can write

D0 =


−λ1 λ1P12(0) λ1P13(0) · · ·

λ2P21(0) −λ2 λ2P23(0) · · ·
· · −λ3 · · ·
· · · · · ·
· · · · · ·


and

D1 =


λ1P11(1) λ1P12(1) λ1P13(1) · · ·
λ2P21(1) λ2P22(1) λ2P23(1) · · ·
· · · · · ·
· · · · · ·

 .
• Fundamental arrival rate = πD0e, where πD = 0, πe = 1.

Batch Markovian arrival processes (BMAP):
Amore general variant of MAP is BMAP, where a state transition can be accompanied
even by the arrival of a batch of customers rather than a single one as in MAP. The
generator matrix is then given by

Q =


D0 D1 D2 D3 D4 · · ·
0 D0 D1 D2 D3 · · ·
0 0 D0 D1 D2 · · ·
· · · D0 D1 · · ·
· · · · · · · ·


where Dk corresponds to the phase transitions, accompanied by a batch of k
customers. A detailed discussion on MAP and BMAP is given in Lucantoni [54].

1.4 Matrix analytic methods

Though queuing theory has lot of applications in areas like mobile phone
communications, banks, computer networking etc., the usual existing methods like
methods of generating functions, methods using transforms etc. fail to provide
much tractability in the analysis of many queuing models especially when the
distribution of inter-arrival time or service time is not exponential. Neuts [63]
introduced and developed matrix analytic methods which gave us the ability to
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analyse much complicated stochastic models in an algorithmic way and to numerically
explore the problems more deeply. We use the matrix analytic methods to analyse
quasi-birth-death (QBD) processes arising in the models in this thesis.

1.4.1 Level independent quasi-birth-and-death processes

Consider a Markov process {X(t) : t ∈ R+} with state space {(i, j) : i ≥ 0 , 1 ≤
j ≤ m} which we again partition as ∪n≥0l(n) where l(n) = {(n, i) : 1 ≤ i ≤ m}.
n is called the level and j is called the phase. Such Markov process is called a
quasi-birth-and-death process (QBD) if one-step transitions from a level is restricted
to states in the same level or in the two adjacent levels. If the transition probabilities
are assumed as level independent, i.e P{X1 = (n′, j)|X0 = (n, i)} depends on i, j, n′−
n, but does not depend on the specific values of n and n′, then that process is
called level independent quasi-birth-and-death process (LIQBD). The infinitesimal
generator is the irreducible tridiagonal matrix Q, given by

Q =



B0 A0 0 0 0 · · · 0
B1 A1 A0 0 0 · 0
0 A2 A1 A0 0 · 0
0 0 A2 A1 A0 · 0
· · · · · · ·
· · · · · · ·


.

Then, we have the following theorem (Neuts [63]).

Theorem 1.4.1. The QBD is positive recurrent iff the minimal non-negative solution
R of the equation

R2A2 +RA1 + A0 = 0 (1.4.1)

has spectral radius less than one and there exists a positive vector x0 that satisfies the
following finite system of equations:

x0(B0 +RB1) = 0

x0(I −R)−1e = 1. (1.4.2)

The stationary probability vector x = (x0, x1, ..) of the QBD is given by

xi = x0R
i, i ≥ 1. (1.4.3)
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If the matrix A = A0 + A1 + A2 is irreducible, then sp(R) < 1 if and only if πA0e <
πA2e, where π is the stationary probability vector of matrix A.

Matrix R records the rate of sojourn in the states of l(n + 1) per unit local time
of l(n).

We define two matrices G and U as follows:

Gij = P{τ <∞&X(τ) = (n−1, j)|X(0) = (n, i)}, where τ is the first passage time to a level

and
U = A1 + A0G.

That is, U is the generator of the Markov process in the local time l(n) before
first visit to l(n − 1). We use Logarithmic Reduction Algorithm (See Latouche and
Ramaswami [50]) to find the matrix G, which in turn can be used to find U and hence
R, since R = −A0(A1 + A0G)−1.

Special Structure: If the QBD is recurrent and that A2 = c.r, where c is a
column vector and r is a row vector normalized by r.e=1, then

G = e.r

For details, see Latouche and Ramaswami [50].

1.4.2 Level dependent quasi-birth-and-death processes

A level dependent quasi-birth-and-death processes (LDQBD) is a Markov process
with state space ∪n≥0l(n), where l(n) = {(n, i) : 1 ≤ i ≤ m}. The infinitesimal
generator is given by

Q =



A1,0 A0,0 0 0 0 · · · 0
A2,1 A1,1 A0,1 0 0 · 0
0 A2,2 A1,2 A0,2 0 · 0
0 0 A2,3 A1,3 A0,3 · 0
· · · · · · ·
· · · · · · ·


.

The transitions are to the adjacent levels alone, but the transition rate will depend
on the level at which the process is then. Assuming that the process is irreducible,
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we have the following theorems (Latouche and Ramaswami [50]).

Theorem 1.4.2. If a LDQBD is positive recurrent, its limiting probability vector
π = (π0, π1, π2, ...) satisfies the relation

πn = πn−1Rn, n ≥ 1

where the matrices Rn are the minimal non-negative solutions of the system of
equations

RnRn+1A2,n+1 +RnA1,n + A0,n = 0.

Theorem 1.4.3. The LDQBD is positive recurrent if and only if there exists a strictly
positive solution of the system

π0 = π0(A1,0 +R1A2,1),

normalized by
π0
∑
n≥0

( ∏
1≤k≤n

Rk

)
e = 1.

1.5 Regenerative approach

The process {X(t) : t ∈ T} is called regenerative if there exists a random epoch t1

such that
(i) {X(t+ t1) : t ∈ T} is independent of {X(t) : 0 ≤ t < t1} and
(ii) {X(t+ t1) : t ∈ T} has the same distribution as {X(t) : t ∈ T}.

Now, let us consider a class of regenerative queueing systems with renewal instants
{tn} ( for example arrival instants) with i.i.d inter-renewal times τn = tn+1− tn, n ≥ 0

independent of arrival instants t0 of initial customer. The input process is called
zero-delayed if t0 = 0. If t0 > 0 , we call it delayed process. Let us take the
input rate λ = 1/E[τ ] ∈ (0,∞) and {Sn, n ≥ 0} as service time process. Let us
introduce the right-continuous queue size process ν = ν(t), where at instant t, ν(t)

denotes the number of customers in the system and let νn = ν(t−n ). Also, consider the
right-continuous workload process W = {W (t)}, where W (t) is the amount of time
needed to complete service of all customers presented at t and define Wn = W (t−n ).
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From Lindley’s recursion, we know that

Wn+1 = (Wn + Sn − τn)+, n ≥ 0.

As it is obvious that {Wk = 0} = {νk = 0}, the embedded sequences {τn} and
{Wn} regenerate simultaneously at the instants βn, n ≥ 0, which are defined by

βn+1 = min{k > βn |νk = 0}, n ≥ 0, with β0 = 0.

Then {Tn}, defined by Tn+1 = min{tk > Tn|νk = 0}, are the regeneration instants of
the processes τ and W , where T0 = t0. Clearly,

T1 = τ0 + ...+ τβ1−1. (1.5.1)

We call the corresponding queueing process zero-delayed if ν0 = 0. We use E0 for
expectation, T1 = T, β1 = β.
The renewal process {βn} is called positive-recurrent if

β1 <∞ with probability 1 and E0[β] <∞.

Similarly, the renewal process {Tn} is called positive-recurrent if

T1 <∞ with probability 1 and E0[T ] <∞.

For discrete-time-processes, we define the forward renewal time β(n) =

min{βk − n|βk − n > 0} at instant n. For continuous-time-processes, we define the
forward renewal time T (t) = min{Tk − t|Tk − t > 0} at instant t. In the zero-delayed
case, β(0) = β, T (0) = T . Now, because of the asymptotic behaviour of β(n) and
T (t), whatever be the initial values of β(0) and T (0), β(n) and T (t)⇒∞ if and only if
E[β] =∞ and E[T ] =∞ respectively, where→ stands for convergence in probability.

Using Wald’s identity, from equation (1.5.1), we get E0[T ] = E[τ ]E0[β]. As the
main condition to establish stability of a regenerative process is the finiteness of the
mean regeneration period, it is sufficient to prove either E0[β] < ∞ or E0[T ] < ∞
in order to show that the regenerative process is stable. The last step is to establish
that regeneration period is aperiodic, which we can show by the convergence to the
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limit distribution

lim
n→∞

P (Xn ∈ ·) =
E0[
∑β−1

k=0 1(Xk∈·)]

E0[β]
= π(·)

or

lim
t→∞

P (X(t) ∈ ·) =
E0[
∫ T
0
1(Xk∈·)]

E0[T ]
= π(·)

as the case may be. Now to establish the finiteness of the mean regeneration period,
it is sufficient to find constants L < ∞, ε > 0 and a non-random sequence ni, which
will tend to ∞, such that infiP (β(ni) ≤ L) ≥ ε or infiP (T (ni) ≤ L) ≥ ε. A detailed
discussion on regenerative theory is given in Morozov [56].

1.6 Thesis outline and contributions overview

The models that we consider here are mainly intended for studying dynamics and
characteristics of some queueing systems that are related to communication. We
hope that their proper modelling and extensive analysis carried out here will help in
the actual design of such real life systems.

In chapter 2, we propose a model to study the queueing characteristics of nodes
in a wireless network in which the channel access is governed by the well known
binary exponential back off (BEB) rule. By offering the general phase type (PH)
distributional assumptions to channel idle and busy periods and assuming Poisson
packet arrival processes at nodes, we represent the model as a quasi birth death
process (QBD) and analyse it by using matrix analytic methods. Stability of the
system is examined. Several important queueing characteristics that help in efficient
design of such systems are derived. Extensive simulation analysis is performed to
establish the validity of our theoretical results. It is shown that both the simulated
and theoretical results agree on some important performance measures. Some real
life data has been used to get approximate PH representations for channel idle and
busy period variates, which in turn are used for numerical illustrations. Also, we use
these results to compute the joint system size distribution of the network under some
assumptions on routing and handling of packets.

In chapter 3, we consider a wireless sensor network model that handles emergency
packets. If the packets cannot be transmitted within an amount of time after being
generated, their relevance will be lost. Here also, we use the standard BEB scheme for
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collision avoidance and take exponential distribution assumptions for channel busy
and idle periods. Then, we derive distribution of time since a packet is ready for
transmission till it successfully transmitted/ timed out and probability mass function
of the number of collisions experienced by a packet. Some numerical illustrations are
provided.

A single server retrial system with several classes of external customers (incoming
calls) is considered in chapter 4. Arrival of these calls follow Poisson rule. Time
between successive retrials, under constant-rate discipline, are assumed as exponential
with class dependent parameter. In addition to this, there are different classes of
outgoing calls (internal customers) which may occupy server for a random amount
of time when it is idle. We consider two variations of the basic model. In the first
model, if the server is busy, an arriving class-k customer joins the kth orbit and each
orbit behaves like a separated queue. In the second model, all blocked customer joins
a common orbit. Service times of each class are assumed to be iid. Regenerative
analysis admits general service time distribution and by applying this approach, we
derive some explicit expressions for the steady-state probabilities. All distributions
are assumed to be exponential while applying matrix analytical approach. With the
combination of these two methods, we derive the steady state distribution and some
performance measures explicitly for Markovian model.

In chapter 5, a single-server retrial model with multiple classes of customers(calls)
is considered. Arrival of customers follow independent Poisson rule. A new customer,
facing a busy server upon its arrival, may join the corresponding (class-dependent)
orbit queue with a class-dependent probability, or leaves the system forever (balks).
The orbit queues follow constant retrial rate discipline, that is, only one (oldest)
orbital customer of each orbit queue makes attempts to occupy the server, in a
gap of class-dependent exponential times. Within each class, service times are
assumed to be independent and identically distributed (iid). We show that this
setting generalizes the two-way communication systems discussed in chapter 4.
This multi-class system with general service time distributions is analyzed using
regenerative approach. Necessary and sufficient stability conditions, as well as
some explicit expressions for the basic steady-state probabilities, are obtained. A
restricted, two-way communication model with exponential service time distributions,
is analyzed by matrix-analytic method. Moreover, we combine both methods to
efficiently derive explicit solutions for the restricted model. An extensive simulation
analysis is performed to gain deep insight into the model stability and performance. It
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is shown that both the simulated and exact results agree on some important measures
for which analytical expressions are available, and hence establish the validity of our
theoretical treatment. We numerically study the sophisticated dependence structure
of the model to uncover the orbits interaction. We give further details and intuitive
explanations for the system performance which complement the derived explicit
expressions.

In chapter 6, we consider a single server retrial model with two streams of calls
namely, incoming and outgoing. Each stream consists of multiple classes of calls. As
part of the internal work load, presence of outgoing calls are always assumed in the
system. Arrival of incoming calls obeys the Poisson law. Upon seeing a busy server at
its arrival epoch, an incoming call will be directed to an orbit according to the class it
belongs to and tries to get an idle sever in a gap of exponential amount of time, having
class dependent mean. Similar kind of attempt is also being made by the outgoing
calls to reach an idle server. Once the server becomes idle, if neither an incoming nor
an outgoing call is being turned up for an exponential amount of time, the server goes
for vacation and the vacation time is assumed to be exponential. Within each stream,
service times of multiple classes of calls are assumed to be independent exponential
with class dependent means. Matrix analytic method and regenerative approach are
used to derive the explicit form of the steady state probabilities. Many performance
measures are computed to analyse the system performance.

Finally, some conclusions have been drawn based on our contributions, and the
thesis concludes with plan for future work.
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Chapter 2

A Model to Study Some Queuing
Characteristics of Nodes in a Wireless
Network

2.1 Introduction

In recent times, much interest has been shown in setting up of wireless networks
for local area communication due to the increase in infrastructure cost involved in
establishing wired networks. Though wired network is usually faster than wireless
network, the latter offers many privileges to its customers like accessing the network
from anywhere in the range and sharing files and resources with other devices that
are connected to the network, even without having a port.

In order to illustrate the dynamics and behaviour of nodes in a wireless network,
we consider a simple network, having 4 nodes with gateway GW, as shown in figure
1. Among the 4 nodes, assume that nodes 1 and 3 are source nodes. That is,
external arrivals can be generated only at these nodes. The entire route of the packets
generated at each of the source nodes is also shown in figure 2.1.

A circle centred at a node defines the transmission range of that node. All nodes
that are lying inside the transmission range of a particular node are called one hop
neighbours of that node. All other nodes that are lying inside the circles centred at
all one-hop neighbours of a node are called its two-hop neighbours. In figure 2.1, node
1 has only one one-hop neighbour which is node 2 but it has two two-hop neighbours
namely, node 3 and 4. Node 2 has 3 one-hop neighbors 1,3 and 4, but it has no
two-hop neighbour. Similarly for node 3, one-hop neighbour is node 2 and two hop
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Figure 2.1: A general network

neighbours are 1 and 4. If a transmission is being taken place between two nodes,
all one-hop neighbours of those two nodes will sense the channel as busy, but all
two-hop nodes, being not in the transmission range of source node, will not be able
to sense the channel and hence there can be a chance of collision due to the possible
simultaneous transmission by these nodes.

Wireless medium is shared and scarce. Hence multiple nodes may transmit data
packets at the same time over the same channel. So, multiple access protocols are
needed to coordinate transmissions to avoid collisions. IEEE 802.11 protocol has
been set up for fixing international standards for Wireless Local Area Networks
(WLAN’s). In the 802.11 protocol (see [74]), the fundamental mechanism to access the
medium is called as the distributed co-ordination function (DCF). DCF is a random
access scheme based on the carrier sense multiple access with collision avoidance
(CSMA/CA) protocol.

The DCF mechanism, employed for channel access, is described as follows:
consider a node in the network having a packet for transmission. First, the node
senses the channel and if the channel is found idle for a pre-determined period, known
as distributed inter-frame space (DIFS), it transmits the packet. If the channel is
found busy at the instant at which it is monitored, the node has to undergo a back
off period consisting of a random number of time slots, called back off counters,
to minimize the collisions caused by packet transmissions from the other nodes .
So, it initializes a back off timer and at each time instant at which the channel is
monitored, the back off counter is decremented if the medium is found idle, and
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Figure 2.2: Wireless network

is frozen if it is sensed busy. In the latter case, the timer resumes only after the
channel has been found idle for a period longer than DIFS. Among all nodes, the
one for which the back off timer expires first begins transmission whereas the other
nodes freeze their timers by sensing the channel busy at their respective channel
monitoring instants. Once the current transmission gets completed for a node, the
back off process, as explained above, is repeated. Upon the successful reception of
a packet, the destination sends back an immediate acknowledgement (ACK) after a
time interval equal to short inter-frame space (SIFS). In addition to the basic access
mechanism, another optional method, called ready-to-send/clear-to-send (RTS/CTS)
mechanism, is also adopted under DCF. Under this, a node, having a packet for
transmission, reserves the channel by sending a special ready-to-send short frame and
the destination node acknowledges the receipt of the same by sending back a clear-to
send frame. After this, the normal packet transmission and ACK response occur.
Since collision may occur only on the RTS frame, and if so the same is detected by
the lack of CTS response, the RTS/CTS mechanism helps us to increase the system
performance especially when lengthy messages are transmitted. In spite of which
kind of collision avoidance scheme is being used for channel access, packet collision
chances can not be ruled out completely. This is because, for several nodes, back off
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periods may expire simultaneously (of course with small probability) and hence there
are chances of simultaneous multiple transmissions. Also, the phenomena like hidden
node problem, which was first mentioned by Tobagi and Kleinrock [70], may cause
packet collisions. For more details on hidden node problem, refer Boroumand et al
[21] also.

DCF employs a contention resolution scheme namely, binary exponential back-off
(BEB) scheme, to reduce the probability of collisions that may occur due to multiple
simultaneous transmissions. Under this rule, if a node is ready to transmit a packet,
it fixes the contention window size as W and a random value for the number of back
off counters is selected uniformly from 0, 1, 2,. . .W − 1. After expiring the back off
time (as per the procedure explained earlier), the node transmits the packet and if the
packet meets with a collision in that attempt, the contention window size will be set
as W1 = 2W and a value for number of back off counters to be undergone is selected
uniformly from 0, 1, 2,. . .W1 − 1. If the packet is again included in a collision on its
next attempt, the contention window size will be doubled again and this will go on
till the node experiences a maximum of m unsuccessful attempts. Even after this, if
the node again fails to transmit the packet in its future attempts, after each trial, the
contention window size will be fixed asWm = 2mW . In between, if an attempt results
in successful transmission, the contention window size for the node will be reset as
W . Hence, the minimum contention window size, CWmin = W and the maximum
contention window size, CWmax = 2mW.

Phase type (PH) distributions introduced by Neuts [ [62], [63] ] form a dense
subset (in the metric of weak convergence of distributions) of the family of all
distributions defined on [0,∞) and hence they can be used as approximates to
probability distributions of general non-negative random variates. A PH variate
can be regarded as the time until absorption in a finite state Markov chain with
one absorbing state into which absorption is certain. It finds applications in many
areas where stochastic models can be effectively used for system analysis. Apart from
their denseness property that makes them versatile as models, there are many other
motivations for using PH distributions in statistical models, important among them
are their connection with Markov chain and theory of matrices. For more details on
PH distributions and their characteristics, see Latouche and Ramaswami [50] also.

Inspired by the standard BEB rule used for channel access in wireless network,
here we propose a queueing model to study some major characteristics of packets
waiting at an arbitrary node. The objective of the study is not to analyse the
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characteristics of total delay experienced by a packet in the whole network as done by
several researchers, rather we are more interested in finding the important statistical
measures such as probability distributions of system size, waiting time of packets,
number of collisions experienced by a packet at a node, and computation of their
moments in a rigorous manner. Apart from these, we also make an attempt to
derive approximate joint system size distributions at nodes in some kind of multi hop
wireless networks. As mentioned earlier, several researchers have tried to analyse the
throughput and packet delay occurring in wireless communication networks. Bisnik
and Abouzeid [20] has made an attempt to compute the average end-to-end delay and
maximum achievable per-node throughput in random access multi-hop wireless ad
hoc network with stationary nodes. They modelled random access multi-hop wireless
networks as openG/G/1 queueing networks and used the diffusion approximation (see
Kobayashi[48]]) to derive closed form expressions for the average end-to-end delay. In
Deepak [27], delay analysis in a multi-hop wire less network has been presented and
probability distribution of the time spent by a packet at an arbitrary node from
the epoch at which it is ready for transmission till it is successfully transmitted has
been derived as a discrete PH distribution. In these articles, approximate forms
of the pmf and average of the queue size at nodes have been computed by using
diffusion approximation. But, here, we derive the probability distribution of the
number of packets at nodes and its average, rigorously by using matrix analytic
methods. Apart from these, we find out the probability distributions of the number
of collisions experienced by a packet at a node, total waiting time at the node, and
their moments by using the theory of continuous time phase type variates. Then,
we use these results as well as the theoretical approach developed by Kelly [42] to
compute the joint distribution of system size at all nodes in some multi hop networks,
where processing of packets are governed by some specific queue disciplines.

Here, we use PH distributional assumptions for channel idle times and busy times
(as sensed by the node under consideration) due to denseness property of the PH
class. Later, we find out appropriate representation for these PH variates by collecting
real data from a wireless network and computing the maximum likelihood estimates
(MLE) of the concerned PH parameters by using the Expectation-Maximization (EM)
approach. For more details on fitting PH distributions, see Asmussen et al. [10].

In this chapter, section (2.2) provides the mathematical formulation and analysis
of the model in connection with the traffic flow at a node. Many important system
performance measures that are useful in designing such systems are also derived in this
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section. Section (2.3) deals with the joint system size distribution of a network under
some assumptions on routing and handling of packets. In section (2.4), extensive
simulation analysis is performed to establish the validity of our theoretical results, and
some real life data has been used to get approximate PH representations for channel
idle and busy period variates, which in turn are used for numerical illustrations.

2.2 The mathematical model

Based on the sequence of events that happen in connection with the traffic flow at a
node and the rule governed by the standard BEB scheme, the following assumptions
are made:
(i) Data packets arrive at the node and waiting in the queue till they are being
considered for transmission. Let the arrival process be Poisson of rate λ.
(ii) At an instant at which a packet is considered for transmission, the back-off period
for the node starts if the channel is sensed as idle, and a value for back-off counter
is uniformly selected from 0, 1, 2,. . . , W − 1. If the packet has already experienced
j collisions, then the back off counter will be from 0, 1, 2,. . . , Wj − 1. Also, time
spent on each of the back off counters are assumed to be independent and identically
distributed exponential variates having mean 1/µ.
(iii) If the channel is found busy after expiring a back off counter time, the back off
timer will be frozen and resume only after the channel is sensed as idle. The channel
idle periods and busy periods are assumed to be independent PH variates having
representations (α1, T1) and (α2, T2) of order n1 and n2 respectively.
(iv) When the back-off counter at a particular back-off stage becomes zero, the node
starts transmission irrespective of the fact that if the channel is busy or idle. Packet
transmission times are assumed to be independent and identical exponential variates
having mean 1/γ.
(v) A transmission results in collision with probability p and is successful with
probability 1− p.
For nodes in the network that relay messages, the arrivals are of two types- those
primarily generated at the concerned nodes and the ones transmitted from the other
neighbouring nodes- so that in strict sense the aggregate arrival stream may not
be Poisson due to the correlation among the arrivals. However, Zhou and Mitchell
[76] and Wang et al [73] have justified the Poisson arrival assumption through some
experimental measurements. Similarly, a justification to the exponential assumption
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for back off periods and transmission times are also given in Zhou and Mitchell [76]
. However, our back off period distributional assumption is more general since it
consists of a random number of exponential back off slots and hence the entire back
off period acts almost like a PH variate.
Throughout this thesis it is assumed that e stands for a column vector of 1’s and I
represents unit matrix, of appropriate dimensions.
In relation to a particular node, let the state variables be defined as follows:

• N(t), the system size at time t.

• J(t), 0 or 1 according as the channel is idle or busy, as sensed by the node, at t.

• S(t), the back-off stage at t.

• B(t), the back off counter at t. Note that when S(t) = i , B(t) assumes one of
the values uniformly from 0, 1, 2, . . . ,Wi − 1, where Wi = 2iW.

• P (t), the phase of the idle period or busy period at t (depending on if the
channel is idle or busy at t).

Then the process {X(t) : t ≥ 0} = {(N(t), J(t), S(t), B(t), P (t)) : t ≥ 0} is
a continuous time Markov chain with state space E = ∪i ∪j Eij, where Eij =

{0, 1, 2, 3, ...} × {j} × {i} × {0, 1, 2, ...,Wi − 1} × {1, 2, ..., nj+1} for i = 0, 1, 2, . . . ,m

and j = 0, 1. Assume that the states are arranged lexicographically. If we term the
system size as level, then the one step transitions of the above process from the states
in a level are restricted either to the states in the same level or to the states in the
adjacent levels.

Transitions among states in the same level, say, level n, n > 0 can be considered
as four cases as given below:
If (n, i), i = 0, 1 represents the state vector corresponding to the system size n, and
the channel is idle or busy respectively, then transitions from level n to itself consists
of those from (n, 0) to (n, 0) , (n, 0) to (n, 1), (n, 1) to (n, 0), and (n, 1) to (n, 1).
Transitions rates from (n, 0) to (n, 0) are given by

D0 B1 0 0 . . . 0 0

0 D1 B2 0 . . . 0 0

· · · · · ·
0 0 0 0 . . . Dm−1 Bm

0 0 0 0 . . . 0 Dm +B
′
m
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where

Di =



(n, ∗, i, 0) (n, 0, i, 1) (n, 0, i, 2) · · · (n, 0, i,Wi − 1)

(n, ∗, i, 0) −γ 0 0 · · · 0

(n, 0, i, 1) µe T1 − µI 0 · · · 0

(n, 0, i, 2) 0 µI T1 − µI · · · 0

· · · · · · · ·
(n, 0, i,Wi − 1) 0 0 0 · · · T1 − µI


(2.2.1)

for i = 0, 1, 2, . . .m and

Bi =



(n, ∗, i, 0) (n, 0, i, 1) (n, 0, i, 2) · · · (n, 0, i,Wi − 1)

(n, ∗, i− 1, 0) pγ/Wi pγα1/Wi pγα1/Wi · · · pγα1/Wi

(n, 0, i− 1, 1) 0 0 0 · · · 0

(n, 0, i− 1, 2) 0 0 0 · · · 0

· · 0· · · · · ·
(n, 0, i− 1,Wi−1 − 1) 0 0 0 · · · 0


(2.2.2)

for i = 1, 2, . . .m.

B
′
m has the same structure as Bm with the only exception that it reflects the

transitions from back off stage m to itself.
Also note that, as per the back off rule, when the back off counter reaches zero, the
node transmits the packet. So, in this case it is not relevant to mention the idle or
busy status of the channel, due to which the state at this instant is represented by
(n, ∗, i, 0) corresponding to system size n and back off stage i.
In Di, the transitions among the states in the state vector (n, 0, i, k) are just
transitions among intermediate states of the channel idle phase process without
decrementing the back off counter and the transitions from the states (n, 0, i, k) to
(n, 0, i, k − 1) correspond to decrement in the back off counter by 1 with rate µ.
Bi defines the transitions when a packet, already experienced i− 1 collisions, is again
involved in another collision ( with probability p). In this case, the back off stage
of the node is changed to i and back off counter can be chosen as one of the values
uniformly from 0, 1, 2, ....,Wi − 1.
Transition rates corresponding to (n, 0) to (n, 1) are given by
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E0 0 0 · · · 0

0 E1 0 · · · 0

· · · · · · ·
0 0 0 · · · Em


where

Ei =



(n, 1, i, 1) (n, 1, i, 2) · · · (n, 1, i,Wi − 1)

(n, ∗, i, 0) 0 0 · · · 0

(n, 0, i, 1) T 0
1α2 0 · · · 0

(n, 0, i, 2) 0 T 0
1α2 · · · 0

· · · · · · · ·
(n, 0, i,Wi − 1) 0 0 · · · T 0

1α2


(2.2.3)

for i = 0, 1, . . . ,m. Here, the entries of Ei signify the rates in connection with the
absorption of the idle time and consequent beginning of the busy period.

In a similar manner, rates of transitions among the states in (n, 1) to those in
(n, 0) are given by 

F0 0 0 · · · 0

0 F1 · · · 0

· · · · · · ·
0 0 0 · · · Fm


where

Fi =



(n, ∗, i, 0) (n, 0, i, 1) (n, 0, i, 2) · · · (n, 0, i,Wi − 1)

(n, 1, i, 1) 0 T 0
2α1 0 · · · 0

(n, 1, i, 2) 0 0 T 0
2α1 · · · 0

· · · · · · · ·
(n, 1, i,Wi − 1) 0 0 0 · · · T 0

2α1


(2.2.4)

for i = 0, 1, . . . ,m.

33



Also, transitions among the states (n, 1) to themselves yield
G0 0 0 · · · 0

0 G1 · · · 0

· · · · · · ·
0 0 0 · · · Gm


where

Gi =



(n, 1, i, 1) (n, 1, i, 2) (n, 1, i, 3) · · · (n, 1, i,Wi − 1)

(n, 1, i, 1) T2 0 0 · · · 0

(n, 1, i, 2) 0 T2 0 · · · 0

(n, 1, i, 3) 0 0 T2 · · · 0

· · · · · · · ·
(n, 1, i,Wi − 1) 0 0 0 · · · T2


(2.2.5)

for i = 0, 1, . . . ,m.

Transition from level n to level n − 1 can happen only with the successful
transmission of a packet. In order to avoid channel capture, the node has to wait
a back off time after a transmission even though the channel is idle immediately after
a successful transmission. Hence, the said transitions are confined only from the states
in (n, 0) to those in (n− 1, 0). After a successful transmission - which happens with
rate (1 − p)γ - the node will set 0 as its back off stage and choose back-off counter
as one of the values uniformly from 0, 1, 2,W − 1. Thus the transition rates from the
states (n, 0) to (n− 1, 0) are given by

Z0 =


C0 0 · · · 0

C1 0 · · · 0

· · · · · · ·
Cm 0 · · · 0

 (2.2.6)
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where

Ci =



(n− 1, ∗, 0, 0) (n− 1, 0, 0, 1) (n− 1, 0, 0, 2) · · · (n− 1, 0, 0,W − 1)

(n, ∗, i, 0) (1− p)γ/W (1− p)γα1/W (1− p)γα1/W · · · (1− p)γα1/W

(n, 0, i, 1) 0 0 0 · · · 0

(n, 0, i, 2) 0 0 0 · · · 0

· · · · · · · ·
(n, 0, i,Wi − 1) 0 0 0 · · · 0


for i = 0, 1, . . . ,m.

Clearly, the transitions from level n to level n + 1 can occur only by an arrival
of a packet. In this case, transitions can happen from the states in (n, 0) to those in
(n+ 1, 0), and from those in (n, 1) to (n+ 1, 1), with the rate given by the matrix λI
in each case.

Now, we consider transitions among the boundary states. Transition rates from
the states (1, 0) to (0, 0) are given by

Z1 =
[
U0, U1, . . . Um

]T
, (2.2.7)

where
Ui =

[
(1− p)γα1, 0, . . . 0

]T
,

which is having Wi − 1 blocks, and 0 is a zero matrix of order n1.
Rate at which transitions occurring from the states (0, 0) to (1, 0) are given by

Z2 =
[
H0 0 0 · · · 0

]
, (2.2.8)

where
H0 =

[
λe/W λI/W . . . λI/W

]
.

Similarly, rates of transition from (0, 1) to (1, 1) are given by

Z3 =
[
H1 0 0 · · · 0

]
, (2.2.9)

where
H1 =

[
λI
W−1

λI
W−1 . . . λI

W−1

]
.
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Note that, since the states (0, 0) and (0, 1) are those corresponding to an empty node
( the one having no packet for transmission) and no back off stage is being set for
such nodes, the states representing channel idle and busy periods are only figured
under these tags.

Thus, the infinitesimal generator of the continuous time Markov process {X(t) :

t ≥ 0} is

Q =



L M 0 0 0 · · · 0

K A1 A0 0 0 · 0

0 A2 A1 A0 0 · 0

0 0 A2 A1 A0 · 0

· · · · · · ·
· · · · · · ·


(2.2.10)

where

L =

[
T1 − λI T 0

1α2

T 0
2α1 T2 − λI

]

K =

[
Z1 0

0 0

]

M =

[
Z2 0

0 Z3

]

A1 =



D0 − λI B1 0 · · · 0 E0 0 0 · · · 0

0 D1 − λI B2 · · · 0 0 E1 0 · · · 0

0 0 D2 − λI · · · 0 0 0 E2 · · · 0

· · · · · · · · · · · · · ·
· · · · · · Dm +B

′

m − λI 0 0 0 · · · Em

F0 0 0 · · · 0 G0 − λI 0 0 · · · 0

0 F1 0 · · · 0 0 G1 − λI 0 · · · 0

· · F2 · · · 0 0 0 G2 − λI · · · 0

· · · · · · · · · · · · · ·
· · · · · · Fm 0 0 0 · · · Gm − λI


(2.2.11)

A2 =

[
Z0 0

0 0

]
(2.2.12)
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and
A0 = λI. (2.2.13)

Note that the matrices Di, Bi, Ei, Fi, Gi, Z0, Z1, Z2, and Z3 are given by eqns.
(2.2.1) - (2.2.9) respectively.
Next, we explore the condition under which the steady state distribution exists for
the irreducible Markov process {X(t) : t ≥ 0}.

2.2.1 Stability condition

By Neuts [63], {X(t) : t ≥ 0} is positive recurrent (and hence steady state distribution
exists) if and only if

πA0e < πA2e (2.2.14)

where π is the stationary distribution associated with the generator A = A0+A1+A2.

Let π be partitioned as π = [π00, π01, ...., π0m, π10, π11...π1m] based on if the channel is
idle or busy.
Now

A =



D0 + C0 B1 0 · · · 0 E0 0 0 · · · 0

C1 D1 B2 · · · 0 0 E1 0 · · · 0

C2 0 D2 · · · 0 0 0 E2 · · · 0

· · · · · · · · · · · · · ·
Cm · · · · · Dm +B

′
m 0 0 0 · · · Em

F0 0 0 · · · 0 G0 0 0 · · · 0

0 F1 0 · · · 0 0 G1 0 · · · 0

· · F2 · · · 0 0 0 G2 · · · 0

· · · · · · · · · · · · · ·
· · · · · · Fm 0 0 0 · · · Gm


Then πA = 0 and πe = 1 yield:

π∗i0 = π∗00p
i for 1 ≤ i ≤ m− 1 (2.2.15)

π∗m0 = π∗00(p
m/1− p) (2.2.16)
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π0ik = π∗00
γpi

Wi

α1

Wi−k∑
j=1

(−1)jµj−1(H)−j for 0 ≤ i ≤ m, 1 ≤ k ≤ Wi − 1 (2.2.17)

π1ik = π0ikT
0
1α2(−T2)−1 for 0 ≤ i ≤ m, 1 ≤ k ≤ Wi − 1 (2.2.18)

π∗00 =
[ 1

1− p
+

m∑
i=0

Wi−1∑
k=1

piγ

µ

(Wi − k)

Wi

+
m∑
i=0

Wi−1∑
k=1

Wi−k∑
j=1

γpi

Wi

α1(−1)jµj−1(H)−jT 0
1α2(−T2)−1e

]−1
(2.2.19)

where
H = T1 − µI + T 0

1α2(−T2)−1T 0
2α1;

π0i = [π∗i0, π0i1, ...., π0iWi−1],

and
π1i = [π1i1, π1i2...., π1iWi−1]

for i = 0, 1, . . . ,m. Then, eqn.(2.2.14) implies

λ < γπ∗00 (2.2.20)

where π∗00 is given by eqn.(2.2.19).

2.2.2 Steady state distribution of {X(t) : t ≥ 0}

Under the assumption that eqn.(2.2.20) holds good, here we compute the steady state
distribution of the number of packets at the node by using matrix analytic methods.
Since {X(t) : t ≥ 0} is a level independent quasi birth death process (LIQBD), its
steady state distribution ( if exists) has a matrix geometric form. Please refer Neuts
[63] and Latouche and Ramaswami [50] for details on the matrix geometric solution
of QBD processes.
If qi denotes the stationary probability vector of the above LIQBD process
corresponding to the level (number of packets) i, we have

qi = q1R
i−1 for i ≥ 2, (2.2.21)
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where R is the minimal non negative (matrix) solution to the equation

R2A2 +RA1 + A0 = 0

and the vectors q0 and q1 are obtained by solving the system

q0L+ q1K = 0 (2.2.22)

q0M + q1(A1 +RA2) = 0 (2.2.23)

subject to the normalizing condition

(q0 + q1(I −R)−1)e = 1. (2.2.24)

For the computation of the matrix R, we use the logarithmic reduction algorithm
proposed by Latouche and Ramaswami [50]. Once q = [q0, q1, . . . , qn, . . . ] is available,
[q0e, q1e, . . . , qne, . . . ] define the pmf of the queue size of the packets waiting at the
node.
So, the mean queue size at a node

E[N ] =
∞∑
n=1

nqne = q1(I −R)−2e (2.2.25)

and its variance

V ar[N ] = 2q1R(I −R)−3e+ E[N ](1− E[N ]).

In the sections to follow, we derive probability distributions of some important variates
and other measures which may help us in understanding the dynamics and behaviour
of the system more rigorously.

2.2.3 Distribution of the time since a packet is picked for

transmission till it is successfully transmitted

As we discussed, even though a packet at a node is considered for transmission, it
can not be transmitted immediately but it has to undergo a random back off time
before it is getting transmitted. The transmission may result in a collision and in
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that case it has to undergo another random back off time and so on. So, naturally
we are interested in knowing the probability distribution of the time a packet spends
at a node after it is picked for transmission. Let U be the time a packet spends at
a node from the instant at which it is picked for transmission till it is successfully
transmitted. Then U is the time till absorption in a finite state Markov chain, with
absorption corresponds to the successful transmission, starting from any of the states
corresponding to the case where the channel is idle and the back off stage is 0. Hence
U is a PH variate with representation (β, S) where

β =
[

1
W

α1

W
· · · α1

W
0 0 . . . 0

]
(2.2.26)

and

S =



D0 B1 0 · · · 0 E0 0 0 · · · 0

0 D1 B2 · · · 0 0 E1 0 · · · 0

0 0 D2 · · · 0 0 0 E2 · · · 0

· · · · · · · · · · · · · ·
0 · · · · · Dm +B

′
m 0 0 0 · · · Em

F0 0 0 · · · 0 G0 0 0 · · · 0

0 F1 0 · · · 0 0 G1 0 · · · 0

· · F2 · · · 0 0 0 G2 · · · 0

· · · · · · · · · · · · · ·
· · · · · · Fm 0 0 0 · · · Gm


Hence the density of U is

f(u) = βeSu(−S)e, 0 < u <∞ (2.2.27)

So, the average time a packet spends at a node after it is selected for transmission,

E[U ] = β(−S)−1e (2.2.28)

and its variance
V ar[U ] = 2β(S)−2e− (β(−S)−1e)2.
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2.2.4 Probability mass function of the number of collisions

experienced by a packet

In order to find out the pmf of the number of collisions experienced by a packet, we
consider the Markov process {(J(t), B(t), S(t), P (t)) : t ≥ 0} with M as the absorbing
state, which corresponds to the successful transmission of the packet. It is to be
noted that for a node, back off stage k means the packet that is being considered
for transmission has already experienced k collisions. By arranging all the transient
states lexicographically and listing the absorbing state M as the last one, we get the
generator

Q̂ =


K0 J1 0 0 · · · 0 L0

0 K1 J2 0 · · · 0 L1

0 0 K2 J3 · · · 0 L2

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · Km + J

′
m Lm


where

Ki =

[
Di Ei

Fi Gi

]
, Li =

[
Ci

0

]
for i = 0, 1, . . .m;

Ji =

[
Bi 0

0 0

]
for i = 1, . . .m,

and J
′

m =

[
B
′
m 0

0 0

]
.

Let yk be the probability that the packet experiences exactly k collisions before
its successful transmission. Then

y0 = β(−K0)
−1L0

yk = β

k∏
j=1

(−Kj−1)
−1Jj(−Kk)

−1Lk for k = 1, 2 . . .m− 1

and

yk+m = β
m∏
j=1

(−Kj−1)
−1Jj(−(Km + J

′

m))−(k+1)Lm for k ≥ 0,

where β is given by eqn.(2.2.26). Therefore, expected number of collisions experienced
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by the packet,

E[C] =
∞∑
k=1

kyk.

and its variance,

V ar[C] =
∞∑
k=1

k2yk − E[C]2.

2.2.5 Waiting time distribution of a tagged packet

In this section, we attempt to derive the distribution of the time since a packet joins
the queue at a node till it is successfully transmitted. Assume that the packet under
consideration joins the queue say, as the rth unit, r > 0 . Now, we consider the
Markov process {Y (t) = (R(t), J(t), S(t), B(t), P (t) : t ≥ 0}, where R(t) is the rank
of the said packet at time t and J(t), S(t), B(t), and P (t) are same as those defined
earlier. The rank R(t) of the packet is assumed to be i if it is the ith unit in the
queue at time t. it’s rank will be decremented by 1 after each successful transmission
from that node. Since the packets that arrive after the tagged packet can not affect
its rank, level changing transitions in W (t) can take place in only one side of the
diagonal of the generator. Clearly, R(t) can assume one of the values r, r − 1, ...., 1.

Let 0 be the absorbing state denoting the successful transmission of the tagged packet.

The infinitesimal generator Q̄ of {Y (t) : t ≥ 0} assumes the form

Q̄ =



r r − 1 r − 2 · · · 1 0

r A1 A2 0 · · · 0 0

r − 1 0 A1 A2 · · · 0 0

r − 2 0 0 A1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
2 0 0 0 · · · A2 0

1 0 0 0 · · · A1 K

0 0 0 0 · · · 0 0


where A1 is obtained from A1 by omitting the λI term ,

K =

[
Z1

0

]
,
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and Z1 is given by eqn. (2.2.7).
That is,

Q̄ =

[
T T

0

0 0

]
,

where T is the part of the generator corresponding to the transient states
r, r − 1, ...., 1.

Hence the waiting time W of a packet that joins a node as the rth unit in the queue
is a PH (γ, T ) variate with γ = (qr, 0, 0, ...., 0), where qr = qr/qre and qr are given by
eqns. (2.2.21)-(2.2.24).
Using the uniformization approach (refer Latouche and Ramaswami [50] for details),
the distribution function of the waiting time of such a packet can be computed as

W (t) = 1−
∞∑
k=0

e−ct
(ct)k

k!
γP̄ e,

where
P̄ =

1

c
T + I

and c is the maximum of the negative of the diagonal elements of T .
Also, the average waiting time of such a packet

E[W ] = γ(−T )−1e = −qr(A1)
−1[I +

r−1∑
i=1

(−A2(A1)
−1)i].

2.2.6 Estimate of the conditional collision probability p

As per our assumption, a node transmits a packet at the epoch at which its back off
period expires irrespective of the status of the channel.
Therefore, the steady state probability that a node transmits a packet or transmission
probability of an arbitrary node

τ =
m∑
i=0

π∗i0 =
π∗00
1− p

(2.2.29)

by using eqns.(2.2.15) and (2.2.16). Note that π∗00 is given by eqn. (2.2.19). So, if
we assume that there are n nodes in the network, including the one being considered,
which may possibly transmit simultaneously, then as reasoned in Bianchi [19], we
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have
p = 1− (1− τ)n−1. (2.2.30)

The above class of nodes are generally called interfering neighbours of the node under
consideration.
Eqns. (2.2.29) and (2.2.30) represent a system of two non-linear equations in two
unknowns, which can be solved numerically to get p.
By fixed point iteration, we can suggest a scheme to get p iteratively given by

p(k+1) = p(k) + δḠ(p(k)), (2.2.31)

where Ḡ(p) = p +
(
1 − π∗00

1−p

)n−1 − 1 and δ is a number such that δḠ′(p) < 0. Note
that Ḡ′ represents the derivative of Ḡ with respect to p.

2.3 Joint system size distribution

Network queues correspond to systems which consist of many queues with different
types of customers moving from one queue to another in their routes. The route
of a customer through the queues of the system may be fixed or random. Several
researchers produced equilibrium system size distribution in product form for such
networks based on the assumption that amounts of service required by a customer
at successive queues along its route are independent and exponentially distributed.
This assumption forced the said authors to demand that knowledge of the past route
of a customer in a queue is of no use in predicting its future route. However, Kelly
[42] conjectured that if the queues of the network were of a certain form, then even
with the assumptions that the amount of service required by a customer at a queue
in its route was almost arbitrarily distributed and depended on its route and the
amount of service required by it at other queues along its route, the equilibrium
system size distribution could be found in an analytical form. Later Barbour [17]
proved this conjecture.

Kelly [42] dealt with an open system and used a customer’s type to determine not
only its route through the system but also the distribution of the amount of service
it required at each queue along that route. The following were the main assumptions
made by Kelly [42] and Barbour [17].
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• The queueing network consists of J nodes.

• Customers of type i (i = 1, 2, .., I) enter the system in a Poisson stream at rate
ν(i) and pass through the sequence of queues r(i, 1), r(i, 2), . . . , r(i, S(i)) before
leaving the system, where S(i) denotes the number of stages a customer of type
i visits along its route.

• A type i customer at its stage s needs a random amount of service Qis.

• Total service effort offered by a single server when there are nj customers in
queue j is φj(nj) .

• A customer in mth position of jth queue will be given a proportion gj(m,nj)
of this effort, where 1 ≤ m ≤ nj.

• When a customer arrives at queue j, it moves into position m (1 ≤ m ≤ nj + 1)

with probability gj(m,nj + 1) .

Then, Kelly [42] conjectured and Barbour [17] later proved that n(t) ≡
{n1(t), n2(t), ...., nJ(t)} has a limiting distribution P (n) such that

P (n) ∝
J∏
j=1

a
nj
j∏nj

m=1 φj(m)
, (2.3.1)

where

aj =
I∑

n=1

ν(i)

S(i)∑
s=1

I[r(i,s)=j]E[Qis], (2.3.2)

provided

M =
∑
n

P (n) <∞.

Note that the usage of the same function g in the last two assumptions listed above is
very essential, without which the existence of the equilibrium distribution of the joint
system size given by eqns (2.3.1) and (2.3.2) will not be valid for network models
bearing non-exponential service time distributional assumptions. For a detailed
discussion on this, refer Kelly [42] and Barbour [17].

Now we use eqns (2.3.1) and (2.3.2) to determine the joint distribution of the
number of packets waiting at nodes in some special type of wireless networks. Let
us consider a network with nodes having identical features like the same number of
one-hop and two-hop neighbours. Because of this, we can assume that the distribution
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of the amount of time the channel is sensed as busy by each of the nodes are identically
distributed. In a similar manner, channel idle times sensed by all nodes can also be
assumed to be distributed identically. Hence, the distribution of the time from the
instant at which a packet is ready to the instant at which it is successfully transmitted
from each node are also identically distributed. Its density and mean are defined by
eqns (2.2.27) and (2.2.28) respectively. Hence E[Qis] corresponding to our model can
assumed to be the same for all i and s, and is given by

E[Qis] = β(−S)−1e. (2.3.3)

Now consider the routing probability matrix as

R̄ =


p11 p12 · · · p1n

p21 p22 · · · p2n

· · · · · · · · · · · ·
pn1 pn2 · · · pnn

 .

As we assumed earlier, type of a customer will be decided by the route along which
it may traverse. Hence, we can have a maximum of I = n! types of customers.
Suppose that the total external packet generation to the system obey a Poisson rule
of parameter λ and a qi proportion of these is of type i for i = 1, 2, . . . , I so that∑I

i=1 qi = 1. As we assumed, average time that any type of customer takes at any
node in its route is E[Qis], and is given by eqn (2.3.3.)
As per the the two important assumptions made by Kelly [42] and Barbour [17],
which are listed as the last two assumptions given above in this section, we should
also use the same function g in our model due to the non-exponential variate Qis.
Hence, we assume two cases here namely,
case 1
Selection of packets for transmission at nodes is done by LCFS and the new packet
always joins at the end of the queue.
Then we have

gj(m,nj) = 1 if m = nj

= 0 if m 6= nj.

case 2
Selection of packets for transmission is done uniformly from the waiting line and also
the customer joins a position randomly (as per uniform law) upon its arrival at a
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node along its route. In this case, we have

gj(m,nj) = 1
nj

for m = 1, 2, 3, ...nj.

In both cases, we have

aj =
I∑
i=1

qiλ

S(i)−1∑
s=1

pr(i,s),r(i,s+1)=jβ(−S)−1e. (2.3.4)

Hypothetically, since we have only one server at each node, φj(m) = 1 for m =

1, · · · , nj and j = 1, · · · , J .
Therefore,

P (n) ≡
n∏
j=1

a
nj
j∏nj

m=1 φj(m)

≡
n∏
j=1

(
λβ(−S)−1e

I∑
i=1

qi

S(i)−1∑
s=1

pr(i,s),r(i,s+1)=j

)nj
. (2.3.5)

In the above, pr(i,s),r(i,s+1)=j represents the routing probability of a packet of type i,
which is currently at the s th stage of its route, moving to node j at the next stage.

2.4 Numerical illustration

2.4.1 Simulation results

(a) Exponential idle and busy periods (b) Erlang idle and busy periods

Figure 2.3: Difference between theoretical and simulated results

In this section, we present a simulation study of the system under consideration
to see whether the theoretical results that we derived via equations (2.2.21) - (2.2.25)
match with the simulation results. Single trace of the simulation is obtained for
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each value of event corresponding to N = 1000, 2000, 3000, 4000, 5000, 6000, where
N stands for the total number of packets used in simulation study. From each such
trace, estimates of the probabilities of queue being empty (sum of the entries of q0),
queue having one customer(sum of the entries of q1) and mean queue size (EN) at
node are obtained. Absolute difference between these simulated values, which are
denoted by q0e, q1e, and ENe respectively, and the corresponding theoretical values
are computed and compared.

The first experiment (see Fig.2.3 (a)) is conducted by assuming exponential
channel idle and busy times with rates 1.5 and 1 respectively. Transmission times
are exponentially distributed with γ = 0.15. Time spent on each back off counter is
assumed to be exponentially distributed with parameter µ = 0.05. We take minimum
contention window size W = 2 , maximum back off stage m = 3, collision probability
p = 0.1 and arrival rate λ = 0.01. The parameters are chosen so as to satisfy the
system stability condition.

The second experiment (see Fig.2.3 (b)) is carried out by taking Erlang
assumptions, which is a particular case of PH distribution, for idle and busy periods
of the channel. Idle times and busy periods are assumed to follow Erlang(3,4.5)
and Erlang(3,3) respectively of order 3. Also, γ = 0.15, µ = 0.05, W = 2 , m = 2,
p = 0.1, and λ = 0.01.

In both cases, it can be seen that the differences between the theoretical values
and simulated values of the above stated measures converge to zero for large values
of n, the number of packets used in simulation study. This illustrates the validity of
our theoretical results.

2.4.2 Numerical example

In this section, we use our model to study the characteristics of a real time network.
We collect around 300000 observations from our institute network ( IIST campus
network), which is being governed by BEB scheme under 802.11 MAC specification,
and use wireshark software to analyse the data. Activities at one of the nodes are
monitored and the observations corresponding to the events like arrivals of data
packets at the node and amount of channel idle and busy times sensed by that node
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are compiled and displayed by using the histograms shown in Fig 2.4, Fig 2.5, and
Fig 2.6 respectively.
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Figure 2.4: Inter-arrival times fitted with exp(1.0629)

In Fig 2.4, a histogram with 50 bins is used to represent packet inter arrival times
obtained from our real data and surprisingly we can see that the inter arrival time can
very well be approximated by an exponential variate of parameter λ = 1.0629/ms.
The density of the fitted distribution is also shown in Fig 2.4. To some extent, this
justifies our Poisson packet arrival process assumption.
In figure 2.5, the channel idle time observations are shown by a histogram having 50
bins. We try to fit this with a PH variate of order 3. By using the EM approach for
fitting PH variates, developed by Asmussen et al [10], the approximate ML estimates
of the corresponding PH parameters are obtained as
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Figure 2.5: Channel idle times fitted with PH(α1, T1) of order 3
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α1 =
[

0.7530 0.0766 0.1704
]
, T1 =

 −1.8097 0.2397 0.6790

0.1939 −1.3306 0.5483

0.1847 0.5014 −1.1274

 .
The density of the fitted PH variate is also exhibited in Fig 2.5.
In Fig 2.6, the histogram used for representing channel busy period observations
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Figure 2.6: Channel busy times fitted with PH(α2, T2) of order 3

shows that it is not easy to fit this data with a PH variate of small order. But, going
for a representation of higher order will put all numerical computation in chaos. So,
for our numerical illustration purpose, we are forced to stick on with a PH approximate
of order 3, having parameters as

α2 =
[

0.8823 0.0307 0.0870
]
, T2 =

 −7.2175 0.1960 0.5386

0.2835 −1.5407 0.5142

0.2729 0.5297 −1.3043

 .
The density of the PH approximate shown in Fig 2.6 signifies that the fit is far away
from a good fit. However, due to the aforementioned reasons, we proceed with this
representation for channel busy time.
From the data, we get an estimate of the transmission rate from a node as
γ = 2.4856/ms. Time spent on each back off counter is assumed to be exponentially
distributed with parameter µ = 1.5ms. We take minimum contention window size
W = 2 and maximum back off stage m = 3. By using the fixed point iteration
scheme rendered by eqn. (2.2.31), we get an estimate of the conditional collision
probability as p =.0537 by taking the number of interfering neighbours as 20. For
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the above fixed set of parameters, we compute various measures of effectiveness given
by E[N ] = 73.3913, V ar[N ] = 4700.4, E[U ] = 0.6034, V ar[U ] = .3555, E[C] = 5.0190

and V ar[C] = 2.8353.

Now, the probabilities that the waiting times of tagged packets, that join the node
at various positions, do not exceed some pre-determined values, are computed and
shown in table 2.1. Note that the last row of the table represents average waiting
times of such tagged packets.

r=2 3 4 5 6

t=1 0.2276 0.0806 0.0224 0.0051 0.0009
2 0.4762 0.2896 0.1471 0.0633 0.0203
3 0.6274 0.4795 0.3242 0.1930 0.1014
4 0.7195 0.6140 0.4840 0.3480 0.2269
5 0.7809 0.7058 0.6065 0.4889 0.3662
6 0.8250 0.7705 0.6961 0.6022 0.4936
7 0.8596 0.8181 0.7621 0.6891 0.5998
8 0.8870 0.8546 0.8116 0.7553 0.6840
9 0.9094 0.8836 0.8499 0.8060 0.7497
10 0.9279 0.9069 0.8802 0.8456 0.8011
E[W ] 3.5025 4.4266 5.3508 6.2750 7.1991

Table 2.1: Waiting time distribution of tagged packets

In order to illustrate the theoretical results, established in section 2.3, numerically,
we consider a network model with nodes having equal number of one-hop and two-hop
neighbours, as shown in figure 2.7. Here node 1 and 2 are assumed as source nodes
and GW is the gateway. The matrices R̄, F̄ and N̄ exhibit the details of routing of
packets, one-hop, and two-hop neighbours of each node respectively. That is, F̄ij =1
if j is a one-hop neighbour of node i. Similarly, N̄ij =1 if j is a two-hop neighbour of
i.

R̄ =

1 2 3 4 5

1 0 0 1 0 0

2 0 0 0 1 0

3 0 0 0 0 1

4 0 0 0 0 1

5 0 0 0 0 0
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Figure 2.7: A particular network

F̄ =

1 2 3 4 5

1 0 1 1 0 0

2 1 0 0 1 0

3 1 0 0 0 1

4 0 1 0 0 1

5 0 0 1 1 0

N̄ =

1 2 3 4 5

1 0 0 0 1 1

2 0 0 1 0 1

3 0 1 0 1 0

4 1 0 1 0 0

5 1 1 0 0 0

As approximate phase-type representations of the distributions for channel busy
time and idle time sensed by each node, we use the same representations that have
been estimated in this section. Hence, we have E[Qis]=0.6034.
In the present example, there are two types of packets namely, the one that traverses
the route 1 → 3 → 5 → GW and the other having the route 2 → 4 → 5 → GW.
Suppose that the inflow of packets to the system obey Poisson rule of rate λ = 1.0629,
of which both types claim the same proportion. That is, qi = 1

2
for i = 1, 2. Table 2.2
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presents a few values for the joint system size probabilities of packets at nodes in our
model, under both case 1 and case 2 discussed in the previous section.

n P (n) n P (n)

(1,2,1,1,2) 0.000106 (1,1,1,3,2) 0.000034
(1,1,2,2,1) 0.000053 (3,1,1,2,1) 0.000017
(2,2,1,1,2) 0.000034 (1,1,2,2,3) 0.000022
(1,1,1,3,3) 0.000022 (3,1,1,1,2) 0.000034
(1,1,3,2,1) 0.000017 (1,1,1,1,2) 0.000332
(1,4,1,1,3) 0.000007 (2,1,1,2,2) 0.000034
(1,1,2,2,2) 0.000034 (3,1,1,1,3) 0.000022
(2,1,1,2,3) 0.000022 (1,2,2,1,2) 0.000034
(1,1,2,2,1) 0.000053 (1,1,1,3,3) 0.000022
(2,1,1,2,3) 0.000022 (1,1,1,3,1) 0.000053

Table 2.2: Joint system size probabilities

For computing the joint system size probabilities, as displayed in table 2.2, the
normalization constant is taken as the sum of the probabilities corresponding to state
vectors n = (n1, n2, n3, n4, n5) for each ni varies over 0 to 50.

53





Chapter 3

A Queuing Model for Wireless
Network Handling Packets of
Emergency in Nature

3.1 Introduction

Research on technological support in disaster and other emergency situations has
become increasingly common. Wireless sensor networks has gained wonderful
attention both in academia and industry because of its massive application potential.
One of the critical areas of research related to wireless sensor network is to develop
energy-saving techniques, which can extend the lifetime of a wireless sensor network as
much as possible. Many applications (such as intrusion detection, emergency alarm,
fire alarm detection, SOS messages ) require immediate, and guaranteed deliverability
of the information otherwise the information looses its relevance. Therefore, in an
Internet of thing (IoT) environment, sensor networks provide reliable and secure data
transportation. In a resource constraint environment such as wireless sensor networks,
it is important to propagate the information as efficiently as possible among the
neighboring nodes. The energy-consumption effects other factors such as end-to-end
delay, hence plays a crucial role.

When an emergency packet occurs in one node, that node has to wait for its
assigned slot to transmit such a life-critical packet which causes unbearable delay. Li
et al. [53] proposed a new scheme named Quasi-Sleep-Preemption-Supported (QS-PS)
to tackle this problem. Duy and Castro [33] proposed a network architecture that uses
cellular networks and WiFi connections to deliver large files in emergency scenarios

55



under the impairments of wireless channel such as packet losses and intermittent
connection issues. Ameen [2] described a on-demand emergency packet transmission
scheme for wireless body area networks.

Inspired by this assumption, here we consider a wireless sensor network model
that handles emergency packets. Like in the case of the model studied in the previous
chapter, here also we use standard BEB scheme for collision avoidance. However, we
take exponential distribution assumptions for channel busy and idle periods unlike in
the previous case, where we have used more general PH distributions for the same.

Here, we are not attempting to compute the steady state distribution of the system
size. Rather, we just focus our attention on deriving the probability distributions of
packets at nodes after being selected for transmission and the number of collisions
experienced by them before they are successfully transmitted/ timed out.

3.2 Mathematical model

Based on the sequence of events that happen in connection with the traffic flow at a
node and the rule governed by the standard BEB scheme, the following assumptions
are made :

• Data packets arrive at the node and waiting in the queue till they are being
considered for transmission. Let the arrival process be Poisson of rate λ.

• At an instant at which a packet is considered for transmission, the back-off
period for the node starts if the channel is sensed as idle, and a value for
back-off counter is uniformly selected from 0, 1, 2,. . .W − 1. If the packet
has already experienced j collisions, then the back off counter will be from 0,
1, 2,. . . , Wj − 1 where Wj = 2jW . Also, time spent on each of the back off
counters are assumed to be independent and identically distributed exponential
variates having mean 1/µ.

• If the channel is found busy after expiring a back off counter time, the back
off timer will be frozen and resume only after the channel is sensed as idle.
The channel idle periods and busy periods are assumed to be independent
exponential variates having mean 1

θ
and 1

δ
respectively.

• When the back-off counter at a particular back-off stage becomes zero, the
node starts transmission irrespective of the fact that if the channel is busy or
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idle. Packet transmission times are assumed to be independent and identical
exponential variates having mean 1/γ.

• A transmission results in collision with probability p and is successful with
probability 1− p.

• We assume that packets are of emergency in nature. So, if the packets cannot be
transmitted within an amount of time after being generated ( for convenience,
we call this packet life times), their relevance will be lost. Life time of packets
are assumed as PH distributed having representation (α, T ) of order n.

The waiting time process of a packet at a node, after being considered for
transmission, can be viewed as a CTMC. In relation to a particular node, let the
state variables be defined as follows:

• J(t), 0 or 1 according as the channel is idle or busy at t, as sensed by the node.

• S(t), the back-off stage at t.

• B(t), the back off counter at t. Note that when S(t) = i , B(t) assumes one of
the values uniformly from 0, 1, 2, . . . ,Wi − 1, where Wi = 2iW.

• Z(t), the phase of life time period of the packet at t.

Then, the process {φ(t) : t ≥ 0} = {(J(t), S(t), B(t), Z(t)) : t ≥ 0} is
a continuous time Markov chain with state space E = ∪i ∪j Eij, where Eij =

{j} × {i} × {0, 1, 2, ...,Wi − 1} × {1, 2, ..., n} for i = 0, 1, 2, . . . ,m and j = 0, 1.

In detail, the states are defined as {(0, i), (1, j)}, where i, j = 0, ...,m. Now,(0, i) =

{(0, i, k) : k = 0, 1, ..,Wi − 1} and (1, j) = {(1, j, l) : l = 0, 1, ..,Wj − 1}.
For our convenience, we define (0, i, 0) = (i, 0). So, (i, 0) = {(i, 0, 1), .., (i, 0, n)} for
0 ≤ i ≤ m. Assume that the states are arranged lexicographically.

Let Q be the infinitesimal generator of the process φ(t). Then Q can be written
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as

Q =



(0, 0) (0, 1) (0, 2) · · · (0,m) (1, 0) (1, 1) (1, 2) · · · (1,m)

(0, 0) D0 + C0 B1 0 · · · 0 E0 0 0 · · · 0

(0, 1) C1 D1 B2 · · · 0 0 E1 0 · · · 0

(0, 2) C2 0 D2 · · · 0 0 0 E2 · · · 0

· · · · · · · · · · · · · · ·
(0,m) Cm · · · · · Dm +B

′
m 0 0 0 · · · Em

(1, 0) F0 0 0 · · · 0 G0 0 0 · · · 0

(1, 1) 0 F1 0 · · · 0 0 G1 0 · · · 0

(1, 2) · · F2 · · · 0 0 0 G2 · · · 0

· · · · · · · · · · · · · · ·
(1,m) · · · · · · Fm 0 0 0 · · · Gm



.

Different block matrices appearing in Q are explained and exhibited as follows.

Di =



(i, 0) (0, i, 1) (0, i, 2) · · · (0, i,Wi − 1)

(i, 0) T + T 0α− γI 0 0 · · · 0

(0, i, 1) µI T + T 0α− (θ + µ)I 0 · · · 0

(0, i, 2) 0 µI T + T 0α− (θ + µ)I · · · 0

· · · · · · · ·
(0, i,Wi − 1) 0 0 0 · · · T + T 0α− (θ + µ)I



In Di, the transitions among the states in the state vector (0, i, k) are just
transitions among intermediate states of the life time phase process without
decrementing the back off counter and the transitions from the states (0, i, k) to
(0, i, k − 1) correspond to decrement in the back off counter by 1 with rate µ.

Bi =



(i, 0) (0, i, 1) (0, i, 2) · · · (0, i,Wi − 1)

(i− 1, 0) pγeα
Wi

pγeα
Wi

pγeα
Wi

· · · pγeα
Wi

(0, i− 1, 1) 0 0 0 · · · 0

(0, i− 1, 2) 0 0 0 · · · 0

· · 0· · · · · ·
(0, i− 1,Wi−1 − 1) 0 0 0 · · · 0


.
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Bi defines the transitions when a packet, already experienced i− 1 collisions, is again
involved in another collision ( with probability p). In this case, the back off stage
of the node is changed to i and back off counter can be chosen as one of the values
uniformly from 0, 1, 2, . . . ,Wi − 1.

Ci =



(0, 0) (0, 0, 1) (0, 0, 2) · · · (0, 0,W − 1)

(i, 0) (1−p)γeα
Wi

(1−p)γeα
Wi

(1−p)γeα
Wi

· · · (1−p)γeα
Wi

(0, i, 1) 0 0 0 · · · 0

(0, i, 2) 0 0 0 · · · 0

· · 0· · · · · ·
(0, i,Wi − 1) 0 0 0 · · · 0


.

Ci defines the transitions corresponding to the case when a packet experience
successful transmission at back off stage i.

Fi =



(i, 0) (0, i, 1) (0, i, 2) · · · (0, i,Wi − 1)

(1, i, 1) 0 δI 0 · · · 0

(1, i, 2) 0 0 δI · · · 0

· · · · · · · ·
(1, i,Wi − 1) 0 0 0 · · · δI


The entries of Fi signify the rates in connection with the completion of the

channel busy time and subsequent beginning of the channel idle period.

Ei =



(1, i, 0) (1, i, 1) (1, i, 2) · · · (1, i,Wi − 1)

(i, 0) 0 0 0 · · · 0

(0, i, 1) θI 0 0 · · · 0

(0, i, 2) 0 θI 0 · · · 0

· · · · · · · ·
(0, i,Wi − 1) 0 0 0 · · · θI
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Here, the entries of Ei represent the rates associated with the expiry of the channel
idle time and hence beginning of its busy period.

Gi =



(1, i, 1) (1, i, 2) (1, i, 3) · · · (1, i,Wi − 1)

(1, i, 1) T + T 0α− δI 0 0 · · · 0

(1, i, 2) 0 T + T 0α− δI 0 · · · 0

(1, i, 3) 0 0 T + T 0α− δI · · · 0

· · · · · · · ·
(1, i,Wi − 1) 0 0 0 · · · T + T 0α− δI


In Gi, the transitions among the states in the state vector (1, i, k) are just

transitions among intermediate states of the life time phase process.

Then steady state distribution of the CTMC {φ(t) : t ≥ 0} is obtained as

πi0 = π00p
i for 1 ≤ i ≤ m− 1, (3.2.1)

πm0 = π00(p
m/1− p), (3.2.2)

π0ki =
(−1)i−1

µi
πk0C

′

k(B
′

2 + δθB
′

3)
i−1 +

i−1∑
l=1

(−1)l

µl
πk0γeα

Wk

(B
′

2 + δθB
′

3)
l−1, (3.2.3)

and π1ki = θπ0kiB
′

3 for 1 ≤ i ≤ Wk − 1, 0 ≤ k ≤ m (3.2.4)

where C ′k = γ(I − eα
Wk

) − T − T 0α,B
′
1 = C

′
0, B

′
2 = T + T 0α − (θ + µ)I and B

′
3 =

(δI − T − T 0α)−1.

Now, π00 can be calculated by the normalizing condition

m∑
k=0

Wk−1∑
i=1

π0kie +
m∑
k=0

Wk−1∑
i=1

π1kie +
m∑
k=0

πk0e = 1.

Let τ be the probability that a node transmits a packet (before the packet is being
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timed out) at an arbitrary point of time.Then

τ = γ
m∑
i=0

πi0b, (3.2.5)

where b is a column vector having n components with bj = eTj (γI − T )−1e.

3.2.1 Distribution of time since a packet is ready for

transmission till it successfully transmitted/ timed out

As we discussed, even though a packet at a node is being considered for transmission,
it can not be transmitted immediately but it has to undergo a random back off time
before it gets transmitted. Then the transmission may result in a collision and in
that case it has to undergo another random back off time and the process continues
in this manner. During this process , even the life time of the packet may get over
before its successful transmission and in this case the packet will be dropped. So,
naturally we are interested in knowing the probability distribution of the time since
a packet is ready for transmission till it is transmitted/ timed out.

Let U be the duration of time from the instant at which a packet (at an arbitrary
node) is ready for transmission till it is either dropped or transmitted. Then, U is a
phase-type random variate with representation (β, S).
Now,

S =



(0, 0) (0, 1) (0, 2) · · · (0,m) (1, 0) (1, 1) (1, 2) · · · (1,m)

(0, 0) D
′
0 B1 0 · · · 0 E0 0 0 · · · 0

(0, 1) 0 D
′
1 B2 · · · 0 0 E1 0 · · · 0

(0, 2) 0 0 D
′
2 · · · 0 0 0 E2 · · · 0

· · · · · · · · · · · · · · · · ·
(0,m) 0 · · · · · D

′
m +B

′
m 0 0 0 · · · Em

(1, 0) F0 0 0 · · · 0 G
′
0 0 0 · · · 0

(1, 1) 0 F1 0 · · · 0 0 G
′
1 0 · · · 0

(1, 2) · · F2 · · · 0 0 0 G
′
2 · · · 0

· · · · · · · · · · · · · · · · ·
(1,m) · · · · · · Fm 0 0 0 · · · G

′
m
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where Ei, Fi are the same as those defined earlier and D′i and G
′
i are defined as

D
′

i =


T − γI 0 · · · 0 0

µI T − (θ + µ)I · · · 0 0

· · · · · · ·
0 0 · · · µI T − (θ + µ)I

 , G′i = IWi−1 ⊗ (T − δIn).

If the initial probability vector β is partitioned as β =

(Y00, Y01, ..., Y0m, Y10, Y11, .., Y1m) corresponding to the lexicographical ordering
of the states as explained earlier, then

Y00 = π00(e− γb)α +
m∑
i=0

πi0
γ(1− p)bα

W

Y00l = π00l(e− (θ + µ)d)α +
m∑
i=0

πi0
γ(1− p)bα

W
, for 1 ≤ l ≤ w − 1

Yi0 = πi0(e− γb)α, for 1 ≤ i ≤ m

Y0il = π0il(e− (θ + µ)d)α

Y1il = π1il(e− δf)α, for 1 ≤ i ≤ m and 1 ≤ l ≤ wi − 1

(3.2.6)

where dj = eTj ((θ + µ)I − T )−1e and fj = eTj (δI − T )−1e.

Hence, the density of U is

f(u) = βeSu(−S)e, 0 < u <∞. (3.2.7)

So, the average time a packet spends at a node after being selected for
transmission,

E[U ] = β(−S)−1e (3.2.8)

with the variance
V ar[U ] = 2β(S)−2e− (β(−S)−1e)2.
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3.2.2 Probability mass function of the number of collisions

experienced by a packet

In order to find out the pmf of the number of collisions experienced by a packet, we
consider the Markov process {(J(t), B(t), S(t), Z(t)) : t ≥ 0} with M as the absorbing
state, which corresponds to the successful transmission/ time out of the packet. It is
to be noted that for a node, back off stage k means the packet that is being considered
for transmission has already experienced k collisions. By arranging all the transient
states lexicographically and listing the absorbing state M as the last one, we get the
generator

Q̂ =


K0 J1 0 0 · · · 0 L0

0 K1 J2 0 · · · 0 L1

0 0 K2 J3 · · · 0 L2

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · Km + J

′
m Lm


where

Ki =

[
D
′
i Ei

Fi G
′
i

]
, Li =

[
Hi

Ni

]
for i = 0, 1, . . .m;

Hi = e(Wi) ⊗ T 0 + e
(Wi)
1 ⊗ γe(n) + e(Wi) ⊗ (1− p)γe(n)1 , Ni = e(Wi−1) ⊗ T 0

Ji =

[
Bi 0

0 0

]
for i = 1, . . .m,

and J
′

m =

[
B
′
m 0

0 0

]
.

Here e(j) represents a column vector of order j and e
(j)
i denotes a vector of order j

having only non-zero component 1 at the ith position.

Let yk be the probability that the packet experiences exactly k collisions before
its successful transmission. Then

y0 = β(−K0)
−1L0

yk = β
k∏
j=1

(−Kj−1)
−1Jj(−Kk)

−1Lk, for k = 1, 2 . . .m− 1
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and

yk+m = β

m∏
j=1

(−Kj−1)
−1Jj(−(Km + J

′

m))−(k+1)Lm, for k ≥ 0,

where β is given by eqn.(3.2.6). Therefore, expected number of collisions experienced
by the packet

E[C] =
∞∑
k=1

kyk

and its variance

V ar[C] =
∞∑
k=1

k2yk − E[C]2.

3.3 Numerical illustration

In order to illustrate the performance of the system, we are presenting some numerical
results based on our theoretical findings. In table 3.1, we exhibit the probabilities
that the waiting time of a packet does not exceed some pre-determined values t till
it is successfully transmitted/ timed out, against the variation of θ, the idle time
parameter. For the illustration, we take n = 3, µ = 1, γ = 1, w = 2, p = 0.05, m = 3,
δ = 0.6, α = [1/3, 1/2, 1/6], and

T =

 −1 0 0

0 −1.2 0

0 0 −0.8



θ=0.2 0.4 0.6 0.8

t=2 0.9522 0.9517 0.9511 0.9470
3 0.9874 0.9872 0.9865 0.9848
4 0.9966 0.9965 0.9961 0.9954
5 0.9991 0.9990 0.9988 0.9985

Table 3.1: Cumulative distribution function of waiting time of a packet since it is
ready for transmission till it is successfully transmitted/ timed out vs θ

From table 3.1, it can be seen that, for a fixed t, the above said probabilities are
decreasing with the increase in values of θ whereas, for a fixed θ, they are increasing
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with the increase in values of t. This is due to the fact that as θ increases, probability
that the node senses a busy channel increases so that the proportion of time a packet
waits a time less than a pre-determined value decreases.

By taking the same parameters as considered as above and assuming θ = 0.6, in
table 3.2, we exhibit the probabilities that the waiting time does not exceed some
pre-determined values till it is successfully transmitted/ timed out corresponding to
different values of δ, the channel busy parameter.

δ=0.2 0.4 0.6 0.8

t=2 0.9503 0.9507 0.9511 0.9522
3 0.9862 0.9863 0.9865 0.9868
4 0.9957 0.9959 0.9961 0.9963
5 0.9986 0.9987 0.9988 0.9989

Table 3.2: Cumulative distribution function of waiting time of a packet since it is
ready for transmission till it is successfully transmitted/ timed out vs δ

Table 3.2 shows the variation of the said probabilities against that of δ and t. It can
be seen that for a fixed value of t, both δ and the probabilities are moving in the same
direction. A similar relation exists between t and the probabilities, corresponding to
a fixed value of δ.

p E[C] p E[C]

0.01 0.7965 0.04 1.2964
0.02 0.8712 0.05 1.6827
0.03 1.0214 0.06 2.003

Table 3.3: Expected number of collisions experienced by a packet verses collision
probability

Table 3.3 displays the variation of E[C], the mean number of collisions experienced
by a packet, against the variation of collision probability p. As is expected, E[C]

increases with the increase in values of p.
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Chapter 4

Two-way Communication Orbit Queue
Model with Constant Retrial Rates

4.1 Introduction

Loss models are those where a customer, upon seeing the server as busy at its arrival,
takes a decision to leave the system. These customers are called blocked customers.
There are other cases where a customer sees the server as busy at its arrival gets
the service at a later time by waiting for its turn in an infinite buffer in the system.
But many other real life situations are there in which the blocked customers are not
patient enough to wait and may decide to leave the system initially, but may try after
some random time to get a free server from outside the system. In such cases, we may
assume a blocked customer waits in a virtual waiting space (infinite capacity orbit)
outside the system before retrying to get the server back. These queueing situations
are mainly modeled as retrial queues.

Retrial queues are broadly used in modelling many practical problems such as
those related to call centres, computer networks, cellular networks, medium access
protocols in wired and wireless networks etc. A detailed review of retrial queueing
literature can be found, for example, in [3, 4, 38, 39, 47, 75]. Specific features of the
retrial queue model such as retrial discipline, customer patience, number of servers,
number of customer classes etc. may dramatically complicate the analysis.

The two main retrial disciplines considered in the literature are classical retrial
(where blocked orbital customers retry independently) and constant retrial (where
the retrial rate is fixed). In the latter case, the retrying customers may be considered
as waiting in the orbit queue, with only the oldest customer retrying to approach the
server. It is worth mentioning that the stability conditions of these two models are
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quite different. The system with classical retrial discipline is stable under the same
conditions as the corresponding buffered system due to the so-called asymptotically
work conserving property [57]. At the same time, constant retrial rate discipline
makes stability analysis much more involved. Here, we focus our attention on the
latter discipline.

A significant part of the literature related to retrial queues addresses the situation
where the server remains idle, after a service completion, until a new arrival or a
retrial attempt happens. From a call centre illustration perspective, this means that,
after serving an incoming call, the server always waits for the next call to come. But
in many applications, apart from attending the incoming calls, the server (during
idle periods) may need to perform some internal activity (maintenance, vacation) or
initiate outgoing calls. Models associated with this kind of situations are usually
referred as two-way communication models and such centres are called blended call
centres. (It is more natural to think of a customer retrying from orbit, whereas from
the server’s perspective it might be thought as an incoming/outgoing call. Thus,
hereafter we use the words call and customer as synonyms, adopting the name service
time to designate call duration.)

To begin with, we mention some recent results for multi-class systems governed by
classical retrial discipline. Despite a major difference in retrial disciplines for models
with classical and constant retrial rates, performance analysis and some analytic
results are similar for both the systems, see Morozov and Phung-Duc [60] for details.
Also, in [60], necessary and sufficient stability conditions for GI/G/c-type retrial
system with outgoing calls and feedback, were obtained. Shin and Moon [66] derived
stability criterion for M/M/c-type system by producing approximations to stationary
performance measures. Avrachenkov et al. [13] studied a single server multi-class
retrial model with marked Markovian arrival process (MMAP) and two classes of
customers with different service time distributions and retrial rates (from two separate
orbits), however, with one orbit of limited capacity.

References [14, 16, 58] are dedicated to stability analysis of multi-class systems
with constant retrial rate. Avrachenkov et al. [14] considered GI/G/c-type and
M/G/1-type systems, and necessary stability conditions were derived. Avrachenkov
et al. [16] obtained sufficient stability conditions for M/G/c-type system. Morozov
and Dimitriou [58] addressed an M/G/1-type model with two coupled queue orbits,
for which necessary and sufficient stability conditions were obtained. We also mention
the recent works [15, 68], though they consider a simplified system with service rate,
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independent of customer class.
Now, we look into the literature concerning two-way communication models.

Bhulai and Koole [18] proposed a multi-server queuing model with two-way
communication by assuming identical service time distributions for both incoming
and outgoing calls. Deslauriers et al. [28] developed five Markovian queueing models
for blended call centres, where incoming and outgoing calls are distinguished as well
as undistinguished. But, in both these papers, retrial assumptions were not taken
into account. Falin [37] and Choi et al. [22] found some explicit expressions for
performance measures of an M/G/1/1 retrial system with two-way communication,
in which incoming calls and outgoing calls were assumed to follow the same service
time distribution. Later, Artalejo and Resing [7], by using mean value analysis,
succeeded in getting some measures for M/G/1/1 retrial queues with classical retrial
discipline, and having different service time distributions for incoming and outgoing
calls. Avrachenov et al. [13] studied a single server retrial model with marked
Markovian arrival process (MMAP) and two classes of customers with different
service times and retrial discipline. Later, Artajelo and Phung-Duc [8, 9] analysed
the steady state behaviour of a single server classical retrial queue with two-way
communications with exponential and general service times, respectively. Further,
Sakurai and Phung-Duc [69] extended the study to two-way communication retrial
models having multiple classes of outgoing calls with class-dependent exponential
service times. Phung Duc et al. [65] studied both single-server and multi-server
retrial models with constant retrial rate and short term balanced call blending. A
Poisson input, general service time, single-server, two-way communication model with
constant retrial rate was studied by Aissani and Phung-Duc [12], for which stability
conditions as well as some performance measures were obtained.

The model which is the most similar to the one considered in this chapter is studied
in the recent work by Morozov and Phung-Duc [61], where a M/G/1/1-type constant
retrial rate model with two-way communication is considered. This is a model with
single class of arriving customers and multiple classes of outgoing calls. In another
closely related work by Sakurai and Phung-Duc [69], a similar M/M/1/1-type model
is analysed.

It is to be noted that in the present chapter, we extend the models studied
by Morozov and Phung-Duc [61] and Sakurai and Phung-Duc [69] to multi-class
multi-orbit single server system. In section 4.2, we highlight the novelty of results
obtained here in comparison to [61, 69]. It is worth mentioning that extension to
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multiple orbits dramatically complicates the analysis not only due to complicated
state space, but also because of a dependence between the orbits. We elaborate more
on this aspect in sections (4.2) and (4.6).

The contribution of this chapter is threefold. First, we extend the model studied
by Morozov and Phung-Duc [61] to multiple classes of incoming customers joining
multiple orbits with class-dependent probabilities, which makes the analysis more
complex. In particular, we develop a new coupling-based approach which allows to
connect the process of retrial attempts from each orbit with an independent Poisson
process. Using the new approach, combined with PASTA property, we obtain some
stationary performance measures which have not been available for such general retrial
systems. After obtaining performance measures, we address the stability conditions
yet unknown, to the best of our knowledge, for the considered system. Secondly,
using a restricted single-class model studied by Sakurai and Phung-Duc [69], we
demonstrate a methodological advantage that might be used to explicitly obtain
the stationary probabilities of system states by combining the regenerative and
matrix-analytic methods. Finally, we extend the applicability of the stationary
performance analysis by performing extensive numerical experiments

The structure of the chapter is as follows. In section (4.2), we introduce the
single-class single-orbit system with some preliminary results obtained earlier. In
section (4.3), we extend this model to a multi-orbit model with no outgoing calls
(assuming general service time) and discuss some performance measures along with
necessary and sufficient stability conditions of the model, where coupling method is
used extensively. In section (4.4), a model with different classes of outgoing calls
has been discussed. Section (4.5) deals with a Markovian model where all blocked
customers join the same orbit. Finally in section (4.6), we validate our theoretical
results with extensive simulation performed in R.

4.2 Preliminary results

We start our analysis with a single server, two-way communication system studied
in [61] and [69], where a single class of outgoing calls was being considered. We begin
with general service time case and then refine the results for exponentially distributed
service times. Both cases are necessary for methods of exposition.

A single server accepts input of incoming calls arriving at epochs of Poisson process
of rate λ, with generally distributed iid service times with mean E[S] = 1/µ. Once the
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server is busy, a customer is routed to a single orbit-queue (or, shortly, orbit). Orbital
(retrial) customers try to access the server in gap of exponential amount of time
with constant retrial rate λ(r) . When the server is idle, it may initiate an outgoing
call having exponential duration (with mean E[Z] = 1/µ(o)) after waiting for some
exponentially distributed (with rate λ(o)) period. We put superscripts (i), (r) and (o)

to designate the quantities related to incoming/retrying/outgoing call, respectively.
Note that, at server, we do not distinguish the primary calls and retrying orbital
customers, since both types have the same (general) service time distribution and
thus are later referred as incoming calls.
Let

ρ =
λ

µ
and ρ(o) =

λ(o)

µ(o)
.

Now, let us introduce the following performance measures of which we are
interested in:

P0(Pb = P
(i)
b + P

(o)
b ) – idle (busy) probability of server;

π
(r)
0 (π

(r)
b ) – probability of empty (non-empty) orbit;

P0,0 – empty system probability;

P0,b – probability of idle server together with non-empty orbit;

Pb,0 – probability of busy server and empty orbit;

Pb,b – probability of busy server and non-empty orbit.

We also note the following interrelations between the aforementioned measures:

P0 = P0,0 + P0,b

+ + +

Pb = Pb,0 + Pb,b

= = =

1 = π
(r)
0 + π

(r)
b

(4.2.1)

The following results are adopted from Morozov and Phung-Duc [61]:

P0 =
1− ρ

1 + ρ(o)
= 1− Pb;
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P
(i)
b = ρ;P

(o)
b = ρ(o)

1− ρ
1 + ρ(o)

;

P0,0 =
1− ρ− λ/λ(r)(ρ+ ρ(o))

1 + ρ(o)
;

P0,b =
λ

λ(r)
ρ+ ρ(o)

1 + ρ(o)
.

The main methods used in Morozov and Phung-Duc [61] to obtain these performance
measures were regenerative approach, balance equations for cumulative processes, and
coupling technique. We apply similar techniques here to extend these results into
multi-orbit system set up in section (4.3).

4.2.1 Exponentially distributed service times

Note that, in the particular case of exponentially distributed service times, the
performance measures referred above are derived in Sakurai and Phung-Duc [69]
by using the probability generating function approach as:

Pb = ρ = 1− P0;

P0,b = ρ
λ

λ(r)
;

P0,0 = P0 − P0,b;

Pb,0 = ρP0,0;

Pb,b = ρ2
(

1 +
λ

λ(r)

)
;

π
(r)
0 = (1 + ρ)P0,0;

π
(r)
b = 1− π0.

Now, we demonstrate how the steady state distribution for the single incoming,
single outgoing class Markovian orbit queue model, which is a particular case of
the model discussed in Sakurai and Phung-Duc [69], can be computed by combining
both regenerative and matrix-analytic approach. The same methodology will also be
used in section (4.5) to derive the steady state system size distribution for a particular
case of our model ( a Markovian model where all multi-class incoming calls joining a
single orbit). Note that our general model in this chapter is Non-Markovian (due to
general service time assumptions) and incoming calls belonging to different class join
in the corresponding class specific orbit.
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In connection with the above referred particular case of the model discussed in
Sakurai and Phung-Duc [69], we consider the two-dimensional Markov process
{X(t) = (N(t), Q(t)) : t > 0}, where N(t) (the level) is the number of customers
in the orbit and Q(t) (the phase) is the server state, which is encoded as follows: 0
— server idle, 1 — server busy with incoming call, 2 — server busy with outgoing
call (routine).

Since, by assumption, the process {N(t)} may change only by ±1 at each time
epoch, the process {X(t) : t > 0} is Quasi-Birth-Death (QBD) with infinitesimal
generator having the block-tridiagonal form, given by

Q =



A0,0 A0 0 0 . . .

A2 A1 A0 0 . . .

0 A2 A1 A0
. . .

0 0 A2 A1
. . .

0 0
. . . . . . . . .


, (4.2.2)

where the matrix A0,0 corresponds to boundary states at zero level , and square
matrices Ai, i = 0, 1, 2 of order 3 correspond to non-boundary states. We define these
matrices explicitly as follows:

A0 =

 0 0 0

0 λ 0

0 0 λ

 , A1 =

 −λ− λ
(o) − λ(r) λ λ(o)

µ −λ− µ 0

µ(o) 0 −λ− µ(o)

 ,

A2 =

 0 λ(r) 0

0 0 0

0 0 0

 , A0,0 =

 −λ− λ
(o) λ λ(o)

µ −λ− µ 0

µ(o) 0 −λ− µ(o)

 .

Note that A0 corresponds to arrival of customers into the orbit, and A2 is the departure
of customers from the orbit, which is possible only when the server becomes idle. We
also note that A1 corresponds to server occupation by external customer arrivals, as
well as by service completion, while the diagonal elements of A1 are derived from
balance condition Ae = 0, where

A = A0 + A1 + A2 =

 −λ− λ
(o) − λ(r) λ+ λ(r) λ(o)

µ −µ 0

µ(o) 0 −µ(o)

 . (4.2.3)
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We also stress that A2 is of rank 1.
The condition under which the system is stable is given by the formula (see Neuts

[63])
αA2e > αA0e, (4.2.4)

where α is approximately the vector of probabilities of phases at higher levels (refer
He [41] ), derived from the system {

αA = 0
αe = 1.

(4.2.5)

From (4.2.3) and (4.2.5), it is easy to obtain α, after some algebra, as

α =
(
µµ(o), (λ+ λ(r))µ(o), µλ(o)

)
((µ+ λ+ λ(r))µ(o) + µλ(o))−1. (4.2.6)

Thus, the stability criterion (4.2.4) reduces to

λ(λ+ λ(r))

µλ(r)
+

λλ(o)

λ(r)µ(o)
< 1, (4.2.7)

which is
ρ+

λ

λ(r)
(ρ+ ρ(o)) < 1, (4.2.8)

where ρ = λ/µ and ρ(o) = λ(o)

µ(o)
.

Now, we note that A2 = cr, where c = (λ(r), 0, 0) is a column vector, and r =

(0, 1, 0) is a row vector. Then it follows from Latouche and Ramaswami [50] that
G = er, and

R = −A0(A1 + A0G)−1. (4.2.9)

After some algebra, one obtains

R =
λ

µλ(r)(λ+ µ(o))

 0 0 0

µ(λ+ µ(o)) λ(λ+ λ(o) + λ(r) + µ(o)) + λ(r)µ(o) µλ(o)

µ(λ+ µ(o)) λ(λ+ λ(o) + λ(r) + µ(o)) µ(λ(o) + λ(r))

 .

(4.2.10)
Then the vector π = (π0, π1, . . . ), where πi = (πi,0, πi,1, πi,2) is the stationary
probability of having i customers in the orbit, with phase 0, 1, 2, respectively, is
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obtained in the matrix-geometric form

πi = π0R
i, i > 1, (4.2.11)

where π0 is obtained from the system{
π0(A

0,0 +RA2) = 0
π0(I −R)−1e = 1.

(4.2.12)

After some straightforward calculations, from the first equation of the above
system, one obtains

π0 = π0,0

(
1, ρ
(
1 +

λ(o)

λ+ µ(o)

)
,

λ(o)

λ+ µ(o)

)
,

whereas the second equation provides

π0,0 =
1− ρ− λ

λ(r)
(ρ+ ρ(o))

1 + ρ(o)
.

We note that the solution of the system (4.2.12) requires matrix inversion, which
might be avoided by considering the following alternative system{

ξ0(I −R)(A0,0 +RA2) = 0
ξ0e = 1,

(4.2.13)

where ξ0 = π0(I − R)−1. Then π0 might be obtained by matrix multiplication π0 =

ξ0(I − R). Moreover, the vector ξ0 itself is a performance measure of the system. In
fact, ξ0,i is the stationary probability of server being in state i = 0, 1, 2, irrespective
of the orbit size. Due to the model properties, the system (4.2.13) might be further
transformed into the system {

ξ0(A+ (I −R)M) = 0
ξ0e = 1,

(4.2.14)

where M = A0,0 +A0−A has non-zero elements only in the first row and, moreover,
Me = 0. This allows us to easily obtain the vector ξ0 as

ξ0 =

(
1− ρ

1 + ρ(o)
, ρ,

ρ(o)(1− ρ)

1 + ρ(o)

)
.

75



We note that ξ0,0 is the probability that the server is idle.

4.3 Multi-orbit model with no outgoing calls

Now, we turn onto our model under consideration in this chapter. Initially, we assume
that our model doesn’t take into account any class of outgoing calls. Let us consider a
single server retrial queue with M classes of (primary) customers. Class-k customers
follow a Poisson input flow with rate λk ∈ (0, ∞) and have independent identically
distributed (iid) service times {S(k)

n , n ≥ 1} with a general distribution with mean
E[S(k)] = 1/µk < ∞. By seeing a busy server, a class-k customer joins the k-orbit,
which follows a constant retrial policy. In other words, duration of successive retrial
attempts from k-orbit follows exponential distribution with rate λ(r)k , and independent
of the orbit size (the number of customers in the orbit).

Let
λ =

∑
k

λk and pk =
λk
λ
, k = 1, . . . ,M.

Now, let us denote by V (t) the summary work arrived in the system, B(t) the busy
time of the server, and I(t) the idle time of the server, in interval [0, t). Then,
B(t) + I(t) = t. Also, let Vk(t) be the summary work of class-k customers arrived in
interval [0, t) so that V (t) =

∑
k Vk(t). Let Nk(t) denotes the number of the orbital

customers and Wk(t) denotes the workload (remaining work) in k-orbit queue, at
instant t−. Let S(t) be the remaining service time at instant t−, i.e. the time the
current customer, being in service, departs the server. (By definition, S(t) = 0 if the
server is free at instant t.)

We consider the basic non-Markovian summary queue size process as defined as
follows:

X(t) =
∑
k

Nk(t) +Q(t), t ≥ 0,

where Q(t) ∈ {0, 1} is the number of calls in the server at instant t−. Let {tn, n ≥ 1}
be the instants of the superposed input (Poisson) process with the rate λ. Denote
X(tn) = Xn, n ≥ 1. Let T0 = 0 and Tn, n ≥ 1 be defined recursively by

Tn+1 = inf
(
tk > Tn : Xk = 0

)
, n ≥ 0.

We assume zero initial state, in which case the first customer arrives in the idle
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system at instant t = 0, and, with probability pk, this is a class-k customer. It is
easy to see that {Tn} are classical regenerations of basic process X, with the iid
regeneration periods Tn+1 − Tn (and with generic period T ). It is well-known (for
instance, Assmussen [11]) that if mean generic period E[T ] < ∞, then the process
{X(t)} (and the basic system) is positive recurrent and there exists the weak limit
X(t)⇒ X, which is the stationary number of customers in the system.

Besides the performance measures that are already introduced in section (4.2), let
us define P (k)

b as the probability of server being busy with class k = 1, . . . ,M call;
P

(k)
0, b as the stationary probability that the server is idle and k-orbit is non empty;
P

(k)
0, 0 as the stationary probability that the server is idle and k-orbit is empty; P (k)

b, b as
the stationary probability that the server is busy and k-orbit is non-empty and P (k)

b,0

as the stationary probability that server is busy and k-orbit is empty.
Also, the load related to each class, and the summary load are given by

ρk =
λk
µk

and ρ =
M∑
k=1

ρk

respectively.
Below, we obtain, by a simple regenerative approach, some important steady-state
performance measures of the model, which have been found in Phung-duc et al [65],
Sakurai and Phung-Duc [69] by the detailed Kolmogorov equations approach, for pure
Markovian set up.

4.3.1 Analysis of steady-state regime

Theorem 4.3.1. If the basic system is positive recurrent, then

P0 = 1− ρ = 1− Pb, (4.3.1)

and for each k = 1, . . . ,M ,

P
(k)
b = ρk, ; (4.3.2)

P
(k)
0, b =

λk

λ
(r)
k

ρ; (4.3.3)

P
(k)
0, 0 = 1− (1 +

λk

λ
(r)
k

)ρ. (4.3.4)
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Proof. . Let Ak(t) denotes the number of class-k arrivals in interval [0, t). Then, we
have the balance equation

V (t) =
M∑
k=1

Ak(t)∑
i=1

S
(k)
i = S(t) +

M∑
k=1

Wk(t) + t− I(t). (4.3.5)

Note that the remaining service time S(t) may relate to each class-k customer,
however, S(t) = o(t) ( see Morozov [56]) and, because of the assumed stability,∑M

k=1Wk(t) = o(t) as t → ∞ with probability 1 (w. p. 1) as well, see Smith [67],
Morozov and Delgado [59]. Note that, for each k, with probability 1

1

t

Ak(t)∑
i=1

S
(k)
i =

1

Ak(t)

Ak(t)∑
i=1

S
(k)
i ·

Ak(t)

t
→ ρk. (4.3.6)

Then, as t→∞,

lim
t→∞

V (t)

t
= ρ. (4.3.7)

On the other hand,

lim
t→∞

1

t

(
S(t) +

M∑
k=1

Wk(t) + t− I(t)
)

= 1− P0. (4.3.8)

Note that
lim
t→∞

I(t)

t
= P0 = P (X = 0)

exists w. p. 1 (because of the stationarity) where X , the weak limit of X(t), denotes
the stationary number of calls in the system ( see Smith [67]). Now equation (4.3.1)
follows from equations (4.3.5)-(4.3.8).
Since the work generated by class-k customers in [0, t) is given by Vk(t) =

∑Ak(t)
i=1 S

(k)
i ,

we have

Vk(t) = Sk(t) +Bk(t), (4.3.9)

where Sk(t) is the remaining service time of a class-k customer, provided it is with
the server at t (Sk(t) = 0, if server is free or busy by other class customers), and Bk(t)
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is the busy time the server devotes to class-k customers in interval [0, t). Then

Vk(t)

t
→ ρk,

Bk(t)

t
→ P

(k)
b as t→∞,

and equation (4.3.2) follows.
It is more challenging to find P (k)

0, b . Let Dk(t) denotes the number of retrial class-k
customers which depart k-orbit in [0, t). Also, let D̂k(t) be the number of renewals
in interval [0, t) generated by the iid exponential variables with parameter λ(r)k (with
D̂k(0) = 0). To connect Dk(t) and D̂k(t), we use a coupling as follows: We start
at instant t = 0 and sample the process D̂k until the 1st class-k customer joins
the orbit at some arrival instant t(k)n (of the Poisson input of class-k customers).
For convenience, we denote t(k)n = z

(k)
1 . From z

(k)
1 onwards, this customer begins to

make retrial attempts. At instant z(k)1 , we re-sample remaining renewal (exponential)
time in the renewal process D̂k and then synchronize inter renewal intervals in both
processes Dk and D̂k until the successful attempt of the 1st customer happens, at
some instant v(k)1 . If k-orbit remains non-empty, that is if Nk(v

(k)
1 + 0)) > 0, then we

continue to sample the identical inter renewal times (actually, intervals between the
attempts) in both processes Dk and D̂k until the successful attempt of the next class-k
customer happens, at some instant u(k)1 . If k-orbit becomes empty after instant v(k)1 ,
that is if Nk(v

(k)
1 + 0)) = 0, then we continue to sample only intervals in the process

D̂k until the next orbital class-k customer appears, at some instant z(k)2 . At that, the
process of real departuresDk remains "frozen" until instant z(k)2 . Then, at instant z(k)2 ,
we resample remaining interval in the process D̂k and synchronize next inter renewal
times in both processes as above, until successful attempt occurs at instant u(k)2 , etc.
By construction, the instants of the appearance of class-k customers and successive
attempts of the (top) orbital customers in the process Dk are a subsequence of the
renewal instants of the process D̂k with resampling. (We will keep the same notation
D̂k for this "resampled" process which is stochastically equivalent to originally defined
process D̂k.) Also, we keep notation t

(k)
n for the instants of the appearance of the

events in the (modified) process D̂k. Let us denote

Q(t
(k)
i − 0) = Q

(k)
i , and N(t

(k)
i + 0) = N

(k)
i .

Then, we can define the number of customers which depart k-orbit in interval [0, t)
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as

Dk(t) =

D̂k(t)∑
i=1

1(Q
(k)
i = 0, N

(k)
i > 0), (4.3.10)

where 1 stands for the indicator function. By construction, Dk(t) is the number of
Poisson arrivals (with rate λ(r)k ) which meet idle server and non-empty k-orbit. Then

limt→∞

∑D̂k(t)

i=1 1(Q(k)
i =0, N

(k)
i >0)

D̂k(t)
, which exists (w.p. 1 and in the mean) by the positive

recurrence, is equal to P (k)
0,b since, by PASTA property, P (k)

0,b is the limiting fraction
of the time when the server is free and simultaneously k-orbit is occupied. Thus, by
equation (4.3.10)

lim
t→∞

Dk(t)

D̂k(t)
= P

(k)
0,b . (4.3.11)

Now, we introduce Âk(t), the number of class-k customers that join the orbit in
interval [0, t). Denote Q̂(t−i ) = Q̂i, the state of the server just before the ith arrival
in the superposed input process. Let 1(ζi = k) = 1 if the ith customer is class-k one.
Then, we have

Âk(t) =

A(t)∑
i=1

1(Q̂i = 1, ζi = k),

where A(t) denotes the number of primary arrivals occurring in [0, t). Since E[1(ζi =

k)] = λpk = λk, the limit

lim
t→∞

∑A(t)
i=1 1(Q̂i = 1, ζi = k)

A(t)
= lim

t→∞

Âk(t)

A(t)
= pkPb = pkρ (4.3.12)

exists, where Pb = ρ is the stationary busy probability of the server, and we take into
account the independence between Q̂i and indicator 1(ζi = k). Clearly,

Âk(t) = Nk(t) +Dk(t). (4.3.13)

Note that Nk(t) = o(t) as t→∞, by the positive recurrence, and that, by the renewal
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theory, w.p.1,

D̂k(t)

t
→ λ

(r)
k , k = 1, . . . ,M. (4.3.14)

Then, from equation (4.3.11),

Dk(t)

t
→ λ

(r)
k P

(k)
0,b , k = 1, . . . ,M. (4.3.15)

Again

Âk(t)

t
=
Âk(t)

A(t)

A(t)

t
→ λkρ (4.3.16)

by equation (4.3.12) as t→∞. Then, from (4.3.15) and (4.3.16) we get (4.3.3).

Note that, for each k,

P0 = 1− ρ = P
(k)
0,b + P

(k)
0,0 , k = 1, . . . ,M. (4.3.17)

Then, (4.3.4) follows from (4.3.1) and (4.3.3).

4.3.2 Stability analysis

In this section, we formulate and discuss stability conditions of the basic process X.
For an easy reading, we recall some previous results in this direction obtained, in

particular, in [12, 14, 16, 65, 69].
First of all, we recall the (necessary) stability conditions for the M -orbit model

with no outgoing calls, found in Avrachenkov et al. [16],

λkPb < λ
(r)
k (1− Pb), k = 1, . . . ,M, (4.3.18)

where Pb = ρ =
∑M

k=1 ρk.

Remark 4.3.1. It is worth mentioning that conditions (4.3.18) can be easily obtained
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from the expression

P
(k)
0, b =

λk

λ
(r)
k

ρ =
λk

λ
(r)
k

Pb, given by (4.3.3).

Indeed, since each orbit k is visited by class-k customers with a positive probability
within a regeneration cycle, maxk P

(k)
0, b < P0 so that

P0 >
λk

λ
(r)
k

Pb.

Hence the equation (4.3.18) follows.

Now, we discuss a sufficient stability condition for the model under consideration in
this section. This form of condition is motivated by the requirement to have negative
drift of the workload process.

We note that the idle time of the server (when there exists orbital customers)
between two successive arrivals, happens after departure of a customer from the
server. Note that the remaining time to next arrival (at the departure instant) is
distributed as interarrival time τ . Let ξ(i)0 be an exponential variable with parameter
λ
(r)
i , which describes the time between attempts from orbit i. Then, provided orbit i is

non-empty, the idle time after departure is upper bounded by the variable min(τ, ξ
(i)
0 )

with the mean 1/(λ+ λ
(r)
i ). Note that this idle time (delay) can be treated as a lost

part of server capacity. On the other hand, it can be treated as an additional "service
time" of the customer leaving server. To obtain the sufficient stability condition, we
must take into account the "worst" case, means the maximum possible delay. Let
Ii = 1 if a new arrival is class i one, and Ii = 0, otherwise, that is E[Ii] = pi (here and
below we deal with generic variables). Now we consider an enlarged "service time" Ŝ
which includes the above mentioned maximum delay so that

Ŝ =
M∑
i=1

Ii

(
S(i) + min(τ, ξ

(i)
0 )
)
. (4.3.19)

To obtain the negative drift of the workload process, we must have E[Ŝ] < E[τ ] = 1/λ

( see Morozov [59]). Now,

E[Ŝ] =
M∑
i=1

piE[S(i)] +
M∑
i=1

piE[min(τ, ξ
(i)
0 )]
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=
M∑
i=1

λi
λ

1

µi
+

M∑
i=1

pi

λ+ λ
(r)
i

so that E[Ŝ] < 1
λ
implies

M∑
i=1

ρi + λ

M∑
i=1

pi

λ+ λ
(r)
i

< 1. (4.3.20)

.
By using

∑
i pi = 1 and slightly strengthening the latter inequality, we obtain a

sufficient stability condition as explained below.
The left hand side of (4.3.20) yields

M∑
i=1

ρi + λ
M∑
i=1

pi

λ+ λ
(r)
i

≤
M∑
i=1

ρi + max
1≤i≤M

λ

λ
(r)
i + λ

< 1. (4.3.21)

Hence, this is a sufficient stability condition. We can rewrite equation (4.3.21) as

ρ =
∑
i

ρi < 1− max
1≤i≤M

λ

λ
(r)
i + λ

= min
i

(
λ
(r)
i

λ+ λ
(r)
i

)
. (4.3.22)

Also, it is to be noted that the necessary conditions given by (4.3.18) yield

ρ < min
i

λ
(r)
i

λi + λ
(r)
i

. (4.3.23)

Observe that the function f(x) = x
(λ+x)

is monotonically increasing in x and
maxi λi < λ. Then, we obtain

min
i

λ
(r)
i

λ+ λ
(r)
i

< min
i

λ
(r)
i

λi + λ
(r)
i

. (4.3.24)

It allows us to calculate the difference between the upper bounds of ρ appeared
in equation (4.3.22) and (4.3.23), which are sufficient and necessary conditions
respectively, of the system stability.

This difference is given by

83



∆ = min
i

λ
(r)
i

λi + λ
(r)
i

−min
i

λ
(r)
i

λ+ λ
(r)
i

> 0. (4.3.25)

We study this difference numerically. It is worth mentioning that ∆ > 0 in any case,
and it shows that our approach can not provide a necessary and sufficient condition
for stability. Moreover, it is easy to see that in the particular case that λ(r)i = µ and
λi = λ/M ,

∆ =
µ

λ/M + µ
− µ

λ+ µ

and ∆ = 0 if and only if M = 1.
The behaviour of ∆ corresponding to variation of different class arrival

probabilities, both in symmetric (equal probabilities) as well as in asymmetric
(unequal probabilities) cases, are discussed numerically in section (4.6).

4.4 Multi-orbit model with L classes of outgoing

calls

Now, we turn our attention onto a model as similar to the one discussed in section
(4.3) with the additional assumption that the new model consists of multiple classes
of outgoing calls. The analysis presented in the previous section can be extended
to study the model considering in this section. Here, we consider a single server
system with M classes of incoming customers, obeying Poisson arrival rule with rates
λk, k = 1, . . . ,M and L classes of internal (outgoing) customers. We assume that
when the server becomes empty, an internal class-j call makes attempts to capture
the server after exponential amount of time with rate λ(o)j , j = 1, . . . , L. The class-j
call have iid service times {Z(j)

n , n ≥ 1} with general distribution and service rate
µ
(o)
j = 1/E[Z(j)]. Thus, there is a competition between external and internal calls to

capture the server. Also, note that the basic process {X(t)} remains the same as in
the previous case since Q(t) defines only status of the server and does not describe
which type of customer being served.

Let Ĝj(t) denotes the renewal process generated by attempts of the class-j
outgoing customers to get the server (successful or not) in interval [0, t). That is,
outgoing customers make attempts regardless of whether the server is free or busy,
however such an attempt may be successful only when the server is free. Denote
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by {v(j)i , i ≥ 1} the renewal points of the process Ĝj and let Q̂(j)
i = Q(v

(j)
i − 0) be

the state of server when the ith customer of the j-outgoing call class (in the renewal
process Ĝj) appears, j = 1, . . . , L. Then the actual (successful) number of class-j
customers, Gj(t), appearing in interval [0, t), is

Gj(t) =

Ĝj(t)∑
i=1

1(Q̂
(j)
i = 0),

and the summary work Uj(t) generated by class-j outgoing customers in interval [0, t)

is

Uj(t) =

Ĝj(t)∑
i=1

1(Q̂
(j)
i = 0)Z

(j)
i , j = 1, . . . , L. (4.4.1)

Then, by keeping all other notations as such in the previous section, the balance
equation (4.3.5) assumes the form

V (t) =
M∑
k=1

Ak(t)∑
i=1

S
(k)
i +

L∑
j=1

Uj(t) = S(t) +
M∑
k=1

Wk(t) + t− I(t), (4.4.2)

where the remaining service time S(t) may relate to any customer (incoming or
outgoing), which is being served at instant t, if any. Let ρ(o)j = λ

(o)
j /µ

(o)
j , j = 1, . . . , L.

By the strong law of large numbers,

Uj(t)

t
→ P0ρ

(o)
j (4.4.3)

due to the independence between 1(Q̂
(j)
i ) and Z(j)

i . Here P0 = E[1(Q̂(j) = 0)] is the
stationary probability that a j-outgoing customer meets an idle server (and hence
captures it), where the weak limit

1(Q̂
(j)
i = 0)⇒ 1(Q̂(j) = 0) as i→∞

exists. By PASTA property, E[1(Q̂(j) = 0)] is also the limiting fraction of time
when the server is free, and this is the reason for using the notation P0. Then, as in
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equations (4.3.5)-(4.3.8), we obtain

lim
t→∞

V (t)

t
= ρ+

L∑
j=1

ρ
(o)
j P0 (4.4.4)

and

lim
t→∞

1

t

(
S(t) +

M∑
k=1

Wk(t) + t− I(t)
)

= 1− P0, (4.4.5)

which yield the expression for the stationary idle probability of the server as

P0 =
1−

∑M
k=1 ρk

1 +
∑L

j=1 ρ
(o)
j

= 1− Pb. (4.4.6)

The stationary probability that the server is occupied by a class-j outgoing
customer is indeed given in (4.4.3). In fact, an important observation here is that
the workload Uj(t), can not be accumulated, unlike the work generated by external
customers, and equals the busy time which the server devotes to class-j outgoing calls
in [0, t). Then, from (4.4.3),

lim
t→∞

Uj(t)

t
= P

(j)
b = ρ

(o)
j P0, j = 1, . . . , L. (4.4.7)

We note that
L∑
j=1

P
(j)
b = P0

L∑
j=1

ρ
(o)
j

is the stationary probability that the server is busy with an outgoing customer. Thus
the unconditional busy probability is

Pb = ρ+ P0

L∑
j=1

ρ
(o)
j , (4.4.8)

which is consistent with (4.4.6).

4.4.1 Stability analysis

In this section, we present a brief stability analysis for some particular cases of our
model by taking specific values for M and L, the number of classes of incoming
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and outgoing calls respectively. Then we use these results to formulate a conjecture,
concerning stability of the system, in a general set up.

To start with, consider a model with M = 1 and L = 1. In this case, to obtain
negative drift (stability) condition, we must take into account the lost capacity of the
server (or lost working time) caused by the outgoing calls. To this end, we note that
with probability

q =
λ(o)

λ(o) + λ(r)
,

the server is captured by an outgoing call, which requires a mean service time 1/µ
(o)
1 .

Then, with probability q2, it happens two times and so on. Thus, the total mean time
devoted to outgoing calls between departure of a retrial call and the next successive
attempt equals λ(o)/(µ(o)

1 λ(r)). Adding the unit time portion of this quantity to the
left hand side of the inequality obtained by taking M = 1 in (4.3.18), we get

ρ+
λ

λ(r)
ρ+

λλ(o)

µ
(o)
1 λ(r)

< 1, (4.4.9)

which coincides with the necessary stability condition derived in Aissani and
Phung-Duc [12]. Recall that for M = 1 and L = 2 classes of calls , a necessary
stability condition in the form

ρ+
λ

λ(r)
ρ+ λ

[ λ(o)

µ
(o)
1 (λ

(o)
2 + λ(r))

+
λ
(o)
2

µ
(o)
2 (λ(o) + λ(r))

]
< 1 (4.4.10)

is given in Morozov and Phung-Duc [61].
Continuing in the same way, we consider the model with L classes of outgoing

customers. Denote

qj =
λ
(o)
j∑L

i=1 λ
(o)
i + λ(r)

, j = 1, . . . , L,

the probability that a class-j outgoing customer captures an idle server. Then, as
above, we find that the the mean time devoted to class-j calls by the server before a
successful attempt of an incoming customer is

1

µ
(o)
j

∞∑
i=1

qij =
1

µ
(o)
j

qj
(1− qj)

=
1

µ
(o)
j

λ
(o)
j∑

i 6=j λ
(o)
i + λ(r)

.

Hence, the mean total time spent by the server to serve outgoing calls, that are coming

87



in between two incoming calls is given by

W =
L∑
j=1

1

µ
(o)
j

λ
(o)
j∑

i 6=j λ
(o)
i + λ(r)

. (4.4.11)

This leads to the following conjecture.
Conjecture:

ρ+
λ

λ(r)
ρ+ λW < 1 (4.4.12)

is a necessary stability condition for the single-class model with multiple classes of
outgoing calls, and general service times for both incoming and outgoing calls.

4.5 Single orbit model with multiple classes of

incoming and outgoing calls

Two major characteristics of the models that are discussed in section (4.3) and section
(4.4) are (i) general service time assumptions for both incoming and outgoing calls and
(ii) class specific orbits for incoming calls. However, in this section we present a model
by compromising on both these characteristics by assuming exponential service times
for both type of calls and a common orbit for all class of incoming calls. Consider
a model with M classes of incoming calls. However, it is assumed that the class of
a call is defined just before the service starting epoch. Let λ be the arriving call
rate (with exponentially distributed interarrival times). If at arrival the server is free,
the arriving call defines its class as i w.p. pi, i = 1, . . . ,M and occupies the server
for exponentially distributed service time with rate µi. Otherwise, the call joins the
common orbit and does not define its class. When the orbit is not empty, the (oldest)
call makes attempts to enter the server with exponentially distributed retrial times
(of rate λ(r)) and, upon successful attempt, right before service starts, defines its
class as i w.p. p(r)i , i = 1, . . . ,M . The service rate is µi as defined earlier, for class
i call. Finally, when being idle, the server waits for exponentially distributed time
(with rate λ(o)) and if no customer arrives/retries before this timer expires, the server
starts some routine (or makes an outgoing call) of class j w.p. p(o)j , which makes it
busy for exponentially distributed time with rate µ(o)

j , j = 1, . . . , L.
We consider the process {X(t) = (N(t), Q(t)); t > 0}, where N(t) is the orbit size
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at time t and Q(t) = 0 if the server is idle, Q(t) = i ∈ {1, . . . ,M} if the server is busy
serving incoming call i and Q(t) = M + j, j = 1, . . . , L, if the server is performing
outgoing call of class j. For convenience, we use the same numbering 0, 1, . . . ,M +L

in the rows and columns of matrices, and see that the process X(t) is indeed a QBD.
We define the square matrices (of orderM+L+1) for the block-tridiagonal generator,
given in (4.2.2) , as follows:

A0 =


0 0 . . . 0

0 λ . . . 0
...

... . . . ...
0 0 . . . λ

 , A2 =


0 λ(r)p

(r)
1 . . . λ(r)p

(r)
M 0 . . . 0

0 0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 0 . . . 0

 ,

(4.5.1)

A1 =



−λ− λ(r) − λ(o) λp1 λp2 . . . λpM λ(o)p
(o)
1 . . . λ(o)p

(o)
L

µ1 −λ− µ1 0 . . . . . . . . . . . . 0

µ2 0 −λ− µ2 . . . . . . . . . . . . 0
...

...
... . . . ...

...
...

...
µM 0 0 . . . −λ− µM . . . . . . 0

µ
(o)
1 0 0 . . . 0 −λ− µ(o)

1 . . . 0
...

...
...

...
...

... . . . ...
µ
(o)
L 0 0 . . . 0 0 . . . −λ− µ(o)

L


,

(4.5.2)

A0,0 = A1 +


λ(r) 0 . . . 0

0 0 . . . 0
...

...
...

...
0 0 . . . 0

 . (4.5.3)

For convenience, we use the following notations:

ρi = λ
pi
µi
, i = 1, . . . ,M ;

ρ =
M∑
i=1

ρi,
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ρ
(r)
i = λ(r)

p
(r)
i

µi
; i = 1, . . . ,M ;

ρ(r) =
M∑
i=1

ρ
(r)
i ,

ρ
(o)
j = λ(o)

p
(o)
j

µ
(o)
j

, j = 1, . . . , L;

ρ(o) =
L∑
j=1

ρ
(o)
j .

Special structure of the matrix A = A0 + A1 + A2 allows to obtain the vector α,
appeared in (4.2.4), as

α = α0

(
1, ρ1 + ρ

(r)
1 , . . . , ρM + ρ

(r)
M , ρ

(o)
1 , . . . , ρ

(o)
L

)
,

where the second equation in (4.2.5) provides

α0 =
[
1 + ρ+ ρ(r) + ρ(o)

]−1
.

Thus, it is easy to obtain from (4.2.4) the following stability criterion

λ(ρ+ ρ(r) + ρ(o)) < λ(r). (4.5.4)

Interestingly, (4.5.4) provides a second degree polynomial in λ (since ρ =

λ
∑M

i=1 pi/µi) which can be shown to have two distinct roots. Let the largest one
be denoted by λ∗. Then,

λ∗ =
−ρ(r) − ρ(o) +

√
(ρ(r) + ρ(o))2 + 4λ(r)

∑M
i=1 pi/µi

2
∑M

i=1 pi/µi
.

So, for any value of λ, which is smaller than λ∗ will satisfy (4.5.4) Thus, the system
is stable for λ < λ∗ with the other parameters fixed.

It only remains to note that A2 = cr, where c = (λ(r), 0, 0) is a column vector
and r = (0, p

(r)
1 , . . . , p

(r)
M , 0, . . . , 0) is a row vector. Then, it follows from Latouche and

Ramaswami [50] that G = er, and the rate matrix R is obtained explicitly as

R = −A0(A1 + A0G)−1.
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Recall that the vector π = (π0, π1, . . . ), where πi = (πi,0, πi,1, . . . , πi,M+L) is the
stationary probability of having i customers in the orbit, with server being idle, busy
with incoming or outgoing customer of corresponding class, may be obtained by the
following matrix-geometric solution

πi = π0R
i, i > 1, (4.5.5)

where π0 is obtained from the system{
π0(A

0,0 +RA2) = 0
π0(I −R)−1e = 1

(4.5.6)

Thus, the stationary system state probabilities are obtained explicitly.

4.5.1 Explicit expression for idle probability

Now, we demonstrate a methodologically interesting approach to obtain the
steady-state probabilities explicitly. To simplify the scope, we assume M = 1, which
puts us into the framework of the model considered in Sakurai and Phung-Duc [69].

Obtaining π0 requires matrix inversion and in general is complicated. So, consider
the following equivalent system{

ξ0(I −R)(A0,0 +RA2) = 0

ξ0e = 1,

where ξ0 = π0(I−R)−1. Then, π0 might be obtained by matrix multiplication as π0 =

ξ0(I−R), and ξ0 = (P0, P
1
b , P

(o)
b(1), . . . , P

(o)
b(L)), where P

1
b denotes the probability of server

being busy with primary customer and P (o)
b(j) denotes the probability of server being

busy with jth type of outgoing call, may be obtained using regenerative approach.
For example, for the model with M = 1 and L ≥ 1, we get

ξ0 =

(
1− ρ

1 + ρ(o)
, ρ, ρ

(o)
1

1− ρ
1 + ρ(o)

, . . . , ρ
(o)
L

1− ρ
1 + ρ(o)

)
by using regenerative approach discussed earlier. Then, from the relation π0 = ξ0(I−
R), we get

P0,0 = π0,0 =
1− ρ− λ

λ(r)

(
ρ+ ρ(o)

)
1 + ρ(o)

.
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Thus, in this section, we used both matrix analytic method and regenerative
approach to get the steady state distribution and some important performance
measures for the particular case that M = 1, L ≥ 1.

4.6 Simulation results

Figure 4.1: Estimated vs. exact values
of P0 and P (k)

0,0

Figure 4.2: Estimated vs. exact values
of P (k)

b and P (k)
0,b

In order to validate our theoretical results, we perform some simulation in R. In
the first experiment, we establish the convergence of estimates of those performance
measures for which exact values are available via (4.3.1)–(4.3.4). The single trace of
simulation run is obtained for each value of number of events, N = 10i, for i = 2, . . . , 6.
From each such trace, estimates of the probabilities P0, Pb, P

(k)
b , P (k)

0,0 , and P
(k)
0,b are

obtained. Absolute difference between these simulated estimates (denoted by ’bar’)
and exact values (obtained from (4.3.1)–(4.3.4)), for a system with M = 2 classes
of incoming customers, is computed ( see Fig. 4.1 and 4.2). Values of pi , λ

(r)
i and

µi, for i = 1, 2, are taken arbitrarily. Service times are assumed to be exponential.
Note that, multiple experiments are performed for various parameter combinations,
taken from the system stability region, yielding qualitatively the same results, which
are exhibited in Fig. 4.1 and 4.2. Fig. 4.1 indicates variation of absolute difference
between exact and simulated values of P0 and P (k)

0,0 against the variation of logN . It
is seen that the differences fastly converge to zero for large values of logN . Fig. 4.2
displays the differences for the probabilities P (k)

b and P
(k)
0,b . In all cases, simulation

illustrates the validity of theoretical results and, moreover, allows us to select in the
subsequent experiments a valid number of customers required to obtain performance
measures with high accuracy.
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Figure 4.3: Estimated vs. exact values
of P0

Figure 4.4: Estimated vs. exact values
of Pb

In the second experiment, we establish the convergence of estimates of those
performance measures for which exact values are available via (4.4.6) and (4.4.8).
Single trace of simulation run is obtained for each value of number of events, N = 10i,
for i = 2, . . . , 6. From each such trace, estimates of the probabilities P0 and Pb are
obtained. Absolute difference between these simulated estimates (denoted by ’bar’)
and exact values (obtained from (4.4.6) and (4.4.8)), for a system withM = 1, L = 2,
is computed (see Fig. 4.3 and 4.4).

Now, in order to study the behaviour of ∆, given by (4.3.25), corresponding to
variation of probabilities of different classes of incoming calls, we consider a model
with 2 classes of incoming calls and no outgoing calls ( the model discussed in section
(4.3).

Referring to (4.3.25), we consider ∆ = ∆(p1), as a function of probability p1.
It is easy to deduce from (4.3.25) that ∆(p1) attains its maximum at

p1 =
λ
(r)
1

λ
(r)
1 + λ

(r)
2

.

For better understanding, we depict the dependence of ∆(p1) on p1 ∈ (0, 1) in Fig. 4.5
in the following cases: (i) λ(r)1 = λ

(r)
2 ; (ii) λ(r)1 > λ

(r)
2 ; and (iii) λ(r)1 < λ

(r)
2 . In the first

case, from Fig. 4.5, it may be observed that ∆ = 0 if p1 ∈ {0, 1}, which is consistent
with the remark that ∆ = 0 if and only if M = 1 in the system with symmetrical
orbits (p1 = p2). However, in asymmetric case (p1 6= p2), ∆ = 0 only at one boundary
point.
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Figure 4.5: Dependence of ∆ on the probability p1, for symmetric and asymmetric
orbit cases, for M = 2
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Chapter 5

A Multi-class Orbit Queue with
Constant Retrial Rates and Balking

5.1 Introduction

In the previous chapter, we have analysed various models involving multiple classes
of incoming calls and with/without outgoing calls. From the server’s perspective, it is
immaterial whether the server itself initiates an outgoing call during idle time, or an
arriving customer of some specific type finding an idle server starts getting service. In
the latter case, a customer of this (outgoing) type finding the server busy is assumed
to leave the system forever, or balks. At that, we may think of outgoing calls as
being initiated from an independent Poisson stream of (outgoing class) customers
meeting the server idle. We assume exponential times from beginning of idle period
to outgoing call initiation.

At the same time, incoming customers finding the server busy join the orbit
queue. A generalization of these two extremes (balk or join) is the probabilistic
balking of arrivals facing a busy server. This motivates us to study the single-server
multi-class retrial orbit queues with balking as a generalization of the two-way orbit
queues studied in chapter 4. Regenerative analysis allows us to establish stability
conditions and compute important performance measures for multi-class orbit queues
with balking and general service time distribution.

Many variants of retrial models dealing with different types of customer
behaviour like impatience and balking were studied by researchers. Falin and
Artalejo [36] studied a multi-server model with classical retrial discipline and obtained
approximations for performance measures of the system. Dudin and Klimenok [32]
analysed a multi-server retrial model with balking, governed by batch Markovian
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arrival process and phase-type service times, where the orbital customers were
considered as impatient and non-persistent. With the same assumptions as above
for arrival process and service times, Dudin and Klimenok [31] studied a multi-server
model having Markov modulated retrials. We also mention the work by Artalejo
et al. [5], where a constant retrial rate multi-server system with the recovery factor
(probability to enter idle server) was analyzed by the matrix-analytic method.

The structure of the chapter is as follows. In section (5.2), we introduce the
multi-class multi-orbit single-server model with balking and obtain basic stationary
performance measures by regenerative approach. In section (5.3), we prove necessary
and sufficient stability conditions of the model, where coupling method is used
extensively. In section (5.4), we study some particular cases of our model and
derive expression for mean stationary orbit size. Finally, in section (5.5), we perform
extensive simulation to validate the performance, obtain the convergence rates and
demonstrate some other basic performance measures of interest, which are having no
explicit analytic expressions, to gain more insight into the model.

5.2 Description of the model and performance

analysis

5.2.1 Description of the model

We consider a single-server retrial queue with M classes of balking customers who
may or may not join the orbit queue if the server is busy upon their arrival. Class-k
customers arrive at epochs {t(k)n , n > 1} of a Poisson process with rate λk ∈ (0, ∞)

and have iid general service times {S(k)
n , n ≥ 1} with rate µk and mean E[S(k)] =

1/µk ∈ (0, ∞). Let

λ =
∑
k

λk, pk =
λk
λ
, ρk =

λk
µk

and ρ =
M∑
k=1

ρk.

The class-k customer finding the server busy upon its arrival joins the k-orbit with
probability bk, or leaves the system forever. Thus, we consider a decision of the
nth class-k customer to be a Bernoulli variable β(k)

n such that E[β
(k)
n ] = bk, and
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{β(k)
n , n ≥ 1} are iid for each k. Time between retrial attempts from k-orbit follow

exponential distribution with rate λ(r)k , independent of the orbit size.
It is worth mentioning that the present model incorporates multi-class orbit queues

if bk = 1, and two-way communication queueing system if bk ∈ {0, 1}, k = 1, . . . ,M .
Indeed, if bk = 0 for some k, then an arriving class-k customer finding the server busy
is lost, leaving the system state unaffected. In such a case, class-k customers may be
considered as the outgoing calls initiated by an idle server.

Now, we describe the stochastic processes used hereafter to obtain the steady
state results. Let Ak(t) be the number of class-k arrivals in interval [0, t) and Vk(t) =∑Ak(t)

n=1 S
(k)
n be the summary work of class-k customers registered in the system in

interval [0, t) (with obvious convention Vk(t) = 0 if Ak(t) = 0). Then, V (t) =∑
k Vk(t) represents the total workload of arrivals of all classes in [0, t). In interval

[0, t), let B(t) denote the busy time of the server, and I(t) its idle time so that
B(t) + I(t) = t. Further we split B(t) =

∑M
k=1Bk(t), where Bk(t) is the time the

server devotes to class-k customers in interval [0, t). Also, let Nk(t) denotes the
number of orbital customers and Wk(t) the workload (remaining work) in k-orbit
queue, at instant t−. Let S(t) be the remaining service time at instant t−, i.e. the
time to departure of a customer being served. (By definition, S(t) = 0 if the server is
free.) Similarly, we represent S(t) =

∑M
k=1 Sk(t), where Sk(t) is the remaining service

time, provided class-k customer is at the server at t−, and only one summand may
be positive in this sum.

To define regeneration epochs, we consider the basic non-Markovian summary
queue size process

X(t) =
M∑
k=1

Nk(t) +Q(t), t ≥ 0,

where Q(t) ∈ {0, 1} is the number of calls with the server at instant t−. Let {tn, n ≥
1} be the instants of the superposed input (Poisson) process with rate λ. Let X(tn) =

Xn, n ≥ 1, T0 = 0 and {Tn : n ≥ 1} be defined recursively by

Tn+1 = inf
(
tk > Tn : Xk = 0

)
, n ≥ 0.

We assume zero initial state, that is, the first customer arrives at instant t = 0 in
the system, which is idle just before arrival, and with probability pk, the arriving
customer is of class k, k = 1, . . . ,M . It is easy to see that {Tn} is a sequence of
classical regeneration points of the basic process X, with the iid regeneration periods
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Tn+1 − Tn (and with generic period T ). If the mean period E[T ] < ∞, then the
process {X(t)} (and the model) is positive recurrent, and there exists the weak limit
X(t) ⇒ X, which is the stationary number of customers in the system (see, for
instance, Asmussen [11]).

Now, let us introduce the following steady-state probabilities: P0, the server is
idle; Pb = 1 − P0, the server is busy; P (k)

0,0 , the server is idle and k-orbit is empty;
P

(k)
0,b , the server is idle and k-orbit is non-empty. Additionally, let us denote P (k)

b as
the stationary probability that the server is busy by class-k customer, k = 1, . . . ,M .
These performance measures have been obtained in Phung-duc et al. [65], Sakurai and
Phung-duc [69] by the Kolmogorov’s equations approach, for a restricted (Markovian
two-way communication) model. Below, we obtain these probabilities for our (more
general) model by the regenerative method.

5.2.2 Analysis of steady-state regime

For ease of notation, let us denote

C = 1 + ρ−
M∑
k=1

ρkbk. (5.2.1)

Theorem 5.2.1. If M-class orbit queues are positive recurrent, then

P0 = 1− ρ

C
= 1− Pb, (5.2.2)

and, for each k = 1, . . . ,M , the following relations hold true:

P
(k)
b = ρk

(
1− ρ

C
(1− bk)

)
; (5.2.3)

P
(k)
0, b =

λkbk

λ
(r)
k

ρ

C
; (5.2.4)

P
(k)
0, 0 = 1−

(
1 +

λkbk

λ
(r)
k

)
ρ

C
. (5.2.5)

Proof. By denoting the embedded process Q(t
(k)
n ) by Q

(k)
n , and considering the

summary work Vk(t) that class-k customers bring in the system in interval [0, t),
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we get

Vk(t) =

Ak(t)∑
n=1

S(k)
n

(
1(Q(k)

n = 0) + 1(Q(k)
n = 1)β(k)

n

)
, (5.2.6)

where 1 denotes the indicator function. Then the equations

Vk(t) = Sk(t) +Bk(t) +Wk(t), k = 1, . . . ,M (5.2.7)

hold good. By the positive recurrence, Sk(t) = Wk(t) = o(t) with probability 1
(w.p.1) as t→∞, see Smith [67]. Moreover, w.p.1 the limits

P
(k)
b = lim

t→∞
Bk(t)/t, k = 1, . . . ,M, (5.2.8)

exist. Note that, since the input is Poisson and the process X is positive recurrent,
there exists the weak limit Q(k)

n ⇒ Q(k), where Q(k) is the stationary number of
customers in service observed by class-k customers. Moreover, since Ak(t) → ∞ as
t→∞, it follows by regenerative arguments that, w.p.1

lim
t→∞

1

Ak(t)

Ak(t)∑
n=1

S(k)
n

(
1(Q(k)

n = 0) + 1(Q(k)
n = 1)β(k)

n

)
= E

[
S(k)

(
1(Q(k) = 0) + 1(Q(k) = 1)β(k)

)]
= E[S(k)](P0 + Pbbk), (5.2.9)

where we apply independence between S(k), β(k) and indicators and use PASTA
property. The probability Pb (P0) is also the limiting fraction of the time when the
server is busy (idle). It is worth mentioning that these limits do not depend on
customer class k. Since Ak(t)/t → λk as t → ∞, it is easy to conclude that, as
t→∞,

Vk(t)

t
=
Ak(t)

t

Ak(t)∑
n=1

S
(k)
n

(
1(Q

(k)
n = 0) + 1(Q

(k)
n = 1)β

(k)
n

)
Ak(t)

→ ρk(P0 + Pbbk).(5.2.10)

Finally, (5.2.8) and (5.2.10) give

P
(k)
b = ρk(P0 + Pbbk), k = 1, . . . ,M. (5.2.11)

Now, it remains to define P0. To this end, we sum up (5.2.7) for k = 1, . . . ,M , and

99



obtain the balance relation

V (t) =
M∑
k=1

Vk(t) = S(t) +
M∑
k=1

Wk(t) + t− I(t). (5.2.12)

Since S(t) =
∑M

k=1 Sk(t) = o(t) as t→∞, it follows from (5.2.8)–(5.2.12) that

lim
t→∞

V (t)

t
=

M∑
k=1

ρk(P0 + Pbbk). (5.2.13)

On the other hand, the r.h.s. of (5.2.12) gives in the limit

lim
t→∞

1

t

(
S(t) +

M∑
k=1

Wk(t) + t− I(t)
)

= 1− P0. (5.2.14)

Note that, by the positive recurrence, the limit

lim
t→∞

I(t)

t
= P0 = P (Q = 0)

exists w.p.1. Here the weak limit Q(t) ⇒ Q exists and represents the stationary
number of customers in the server, see Smith [67]. We stress that, by PASTA, P0 =

P (Q = 0) = P (Q(k) = 0) (and Pb = P (Q = 1) = P (Q(k) = 1) as well) for each k,
see (5.2.9). Now (5.2.2) follows from (5.2.12)-(5.2.14), and (5.2.3) follows from (5.2.2)
and (5.2.11).

It is more challenging to find P (k)
0, b . We use Dk(t) to denote the number of retrial

class-k customers which depart k-orbit in [0, t). Also, let D̂k(t) be the number of
renewals in interval [0, t) generated by the iid exponential variables with parameter
λ
(r)
k (with D̂k(0) = 0). That is, D̂k is the Poisson process with rate λ(r)k . Denote
{z(k)n , n ≥ 1} the instants (renewal epochs) of the process D̂k. To connect the real
number of departures Dk with the Poisson process D̂k, we use the following coupling.
We sample the process D̂k until the 1st class-k customer joins the orbit. At this
instant, we resample the remaining renewal (exponential) time in the process D̂k and
then treat the subsequent (inter) renewal intervals in the process D̂k as the process of
the attempts from orbit k, until a class-k orbital customer leaves the orbit empty, if
any. From this instant, we continue to sample the process D̂k until the next customer
joins orbit k. At this instant, we resample the remaining renewal time in the process
D̂k and, as above, interpret the subsequent renewals in the process D̂k as the attempts
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from orbit k, until the orbit becomes empty and so on. Thus, by construction, the
instants of attempts of the (top) orbital customers constitute a subsequence of the
renewal instants of the process D̂k with resampling. Evidently, at each instant of this
subsequence, orbit k is not idle. The modified renewal process (with resampling) is
stochastically equivalent to originally defined process D̂k. In what follows, we keep
the same notation D̂k for the modified process, and {z(k)n , n ≥ 1} for the instants of
this process. For each k, let

Q(z(k)n ) = Q(k)
n and Nk(z

(k)
n ) = N (k)

n , n ≥ 1.

(Recall that Q(t) and N(t) are left-continuous). It then follows from the above that
1(Q

(k)
n = 0, N

(k)
n > 0) = 1 means that the nth instant of the renewal process D̂k is

the successful attempt of a class-k customer to enter the server. Then, the number
of customers which depart k-orbit in interval [0, t) is defined as

Dk(t) =

D̂k(t)∑
n=1

1(Q(k)
n = 0, N (k)

n > 0), k = 1, . . . ,M. (5.2.15)

Since at the instant of each attempt, the orbit is not idle, a key observation is that Dk

can be treated as the number of epochs, among Poisson epochs D̂k (with rate λ(r)k ),
which “meet” empty server and, simultaneously, non-empty orbit k. (Note that the
number of real attempts, in [0, t), from orbit k is defined then as

∑D̂k(t)
n=1 1(N

(k)
n > 0).)

By the positive recurrence, there exists (w.p.1) the limit

lim
t→∞

∑D̂k(t)
n=1 1(Q

(k)
n = 0, N

(k)
n > 0)

D̂k(t)
= P

(k)
0,b . (5.2.16)

We again note that, by PASTA property, P (k)
0,b is also the limiting fraction of the time

when the server is free and the kth orbit is non-empty. Moreover, by the renewal
theory, w.p.1

lim
t→∞

D̂k(t)

t
= λ

(r)
k , (5.2.17)

and thus (5.2.15)–(5.2.17) provide

lim
t→∞

Dk(t)

t
= λ

(r)
k P

(k)
0,b , k = 1, . . . ,M. (5.2.18)
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Now we introduce Jk(t), the number of class-k customers that join the orbit in interval
[0, t). Let us denote Q(tn) by Qn, the state of the server just before the nth arrival
in the superposed input process. Then, we have

Jk(t) =

Ak(t)∑
n=1

1(Qn = 1)β(k)
n , k = 1, . . . ,M.

Again, by PASTA property, Qn ⇒ Q, and moreover

lim
t→∞

∑Ak(t)
n=1 1(Qn = 1)β

(k)
n

Ak(t)
= E[1(Q = 1)β(k)] = Pb bk,

where we apply independence between 1(Q = 1) and β(k). Now, it follows that

lim
t→∞

Jk(t)

t
= λkbkPb, k = 1, . . . ,M. (5.2.19)

Obviously, for each k, we have the balance equation

Jk(t) = Nk(t) +Dk(t). (5.2.20)

Since, by positive recurrence, Nk(t) = o(t) as t → ∞, (5.2.4) follows from
(5.2.18)–(5.2.20) in the limit. Also, we have

P0 = P
(k)
0,b + P

(k)
0,0 k = 1, . . . ,M, (5.2.21)

so that (5.2.5) follows from (5.2.2) and (5.2.4).

Remark 5.2.1. It is to be noted that when bk = 1 for k = 1, 2, ...,M, then (5.2.1)
gives C = 1. Hence, the measures obtained from equations (5.2.2)–(5.2.5) coincide
with the results given by (4.3.1) –(4.3.4).

5.3 Stability analysis

In this section, we establish necessary and sufficient stability conditions of the basic
process X. Based on the explicit expression for the stationary probability P

(k)
0, b

derived above, we arrive at the following necessary stability conditions.
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Theorem 5.3.1 (Necessary stability condition). If the system comprising M-class
orbit queues with balking customers is stable, then

λkbk
ρ

C
< λ

(r)
k (1− ρ

C
), k = 1, . . . ,M. (5.3.1)

Proof. The proof is straightforward. We write expression (5.2.4) as

λ
(r)
k P

(k)
0, b = λkbk

ρ

C
, k = 1, . . . ,M. (5.3.2)

Since the input is Poisson, intervals between attempts are exponential and each orbit
k (with bk > 0) is visited by a blocked class-k customer with a positive probability
within regeneration cycle. It is easy to construct an event, with a positive probability,
when the server is idle and orbit k is nonempty. For example, consider a regeneration
cycle containing exactly one class-j customer, j 6= k. Then, with the probability
which is lower bounded by P (S(j) + δ < τ) ≥ ε for some positive δ, ε, the idle time
of each orbit within regeneration cycle is lower bounded by δ. (Here τ is the generic
exponential interarrival time.) Hence, it follows that P (k)

0,0 > 0 and

1− ρ

C
= P0 = P

(k)
0,b + P

(k)
0,0 > P

(k)
0,b .

Now, (5.3.1) follows from (5.3.2).

Note that λkbk is the effective flow rate to orbit k while ρ/C = Pb is the traffic
intensity.

Remark 5.3.1. It may be noted that the necessary stability conditions, shown in
(5.3.1), of the M-class orbit queues with bk = 1 (equivalently, C = 1) assume the
form

λkρ = λkPb < λ
(r)
k (1− Pb), k = 1, . . . ,M, (5.3.3)

which coincide with the stability condition given by (4.3.18).

Remark 5.3.2. It is worth mentioning that if all bk = 0, then we obtain a loss system
in which C = 1 + ρ and hence it follows from (5.2.2) and (5.2.3) that

Pb =
ρ

1 + ρ
and P

(k)
b =

ρk
1 + ρ

, k = 1, . . . ,M.

103



Now, we establish sufficient stability condition for the model by assuming that all
customers persist, that is, bk = 1, k = 1, . . . ,M . We emphasize that this condition,
as we will see, differs from the necessary condition found above. The form of this
condition is motivated by a negative drift of the workload process which in turn
implies positive recurrence of the basic process X.

In the proof of Theorem (5.3.2) presented below, we make a comparison of the
original retrial system with the classic multi-class system having infinite buffer for the
awaiting customers. The basic difference between these two systems is that, in the
original system, unlike classic system, there exists an idle time of the server after each
service completion, and it makes service discipline non work-conserving. Note that it
holds both for single class and multi-class systems. (For more about work-conserving
discipline, see Asmussen [11].)

Recall that we consider zero initial state, that is, X(0) = X1 = 0.

Theorem 5.3.2. If bk = 1, k = 1, . . . ,M, and the condition

ρ+ max
1≤k≤M

λ

λ+ λ
(r)
k

< 1 (5.3.4)

holds, then the basic process X is positive recurrent.

Proof. For each k, let S(k) = {S(k)
n , n ≥ 1}, the sequence of the iid service times of

class-k customers. Also, define indicator I(k)n = 1 if the nth arrival is class-k one, and
I
(k)
n = 0, otherwise, implying E[Ik] = pk, k = 1, . . . ,M . Then, the service time of the
nth arrival, written in a more detailed form, is

Sn =
M∑
k=1

I(k)n S(k)
n , n ≥ 1. (5.3.5)

Note that, to compose Sn, we select from the (independent) sequences S(k) only
such elements S(k)

n which correspond to I
(k)
n = 1. Also, note that I(k)n and S

(k)
n

are independent. In the retrial model, an idle time of the server occurs after
each departure. At each such instant, the remaining time to next arrival epoch is
exponential and distributed as interarrival time τ . We use {ξ(k)n , n ≥ 1} to denote
the iid exponential variables with parameter λ(r)k between the attempts from the
non-empty orbit k (with generic variable ξ(k)). Then, provided orbit k is non-empty,
the idle time of the server after departure is upper bounded by the variable min(τ, ξ(k))

with the mean 1

λ+λ
(r)
k

. We denote ζn the idle time of server after the nth departure.

104



Note that, if at least one orbit is non-empty after the nth departure, then

E[ζn] ≤ max
1≤k≤M

1

λ+ λ
(r)
k

. (5.3.6)

Now, we construct a dominating buffered system, under FIFO discipline, having same
input and service times as in the original retrial model with the only exception
that here each customer occupies the server, besides its service time, for an extra
exponential time ξo with parameter min1≤k≤M(λ+ λ

(r)
k ) and mean

E[ξo] =
1

min1≤k≤M(λ+ λ
(r)
k )

= max
1≤k≤M

1

λ+ λ
(r)
k

. (5.3.7)

In other words, ξo is the time between attempts from the nonempty orbit with the
slowest retrial rate.

Now we describe this construction in more detail. Recall that we apply the
following coupling: the identical interarrival times and service times in both systems,
original and buffered. Moreover, we introduce the following iid vectors with the
independent components

ξ(n) = (ξ(1)n , . . . , ξ(M)
n ), n ≥ 1,

describing the times between attempts from non-empty orbits. In particular, ξ(l)n
represents the time between (n − 1)th and nth retrial attempt from l-orbit. By
stochastic ordering and coupling, we can sample vector ξ(n) in such a way that the
component ξon (distributed as ξo) representing the nth time between attempts from
(non-empty) "slowest" orbit, indeed is the maximal component of ξ(n). Recall that,
since we apply zero initial state, the 1st departure instant in the original systems is
S1, and that, at this instant, there are the same number of (the same types) customers
in both systems as well. Denote the set of the non-empty orbits at the nth departure
instant in the original system by R(n), and let {τn, n ≥ 1} be the interarrival times
in the merged (Poisson) input. Assume first that the set R(1) is non empty. In
particular, since by assumption the 1st customer arrives at instant t1 = 0, τ1 is the
instant of the 2nd arrival in both systems. Then we assign, using vector ξ(1), the
delay ξ1 = mini∈R(1) ξ

(i)
1 in the original system, while assign the extra service time ξo1 in

the buffered system. Since ξo1 ≥ ξ1, it follows that ζo1 = min(ξo1, τ1) ≥ min(ξ1, τ1) = ζ1
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implying
Ŝ1 = S1 + ζo1 ≥ S1 + ζ1,

where, by construction, Ŝ1 is the 1st departure instant in the buffered system. Then,
the 2nd service in the original system starts not later than that in the buffered system.

Now, we assign, for the 2nd service in the buffered system, the same customer
as the 2nd customer entering server in the original system. (In this case we may
change FIFO order in the buffered system but it does not change the distribution
of the remaining workload.) Continuing in such a way and keeping the described
synchronization between all variables, we see that, at each instant t, the number
of customers E(t) and Ê(t) entered the server in interval [0, t) in the original and
buffered system, respectively, are connected as E(t) ≥ Ê(t).

It remains to consider the case when the original system becomes empty after a
departure. Then the following two scenarios are possible. The buffered system is
empty at the instant of the next arrival, say tn. Then both systems start in zero state
at instant tn. Otherwise, in the buffered system, there exists at least one customer
i < n at instant tn. Thus, in both cases, the inequality E(t) ≥ Ê(t) remains true
as well. Recall that V (t) is the summary work arrived (in both systems) in interval
[0, t). Denote byW (t), Ŵ (t) the remaining work in the original and buffered system,
respectively, at instant t−. Finally, let B(t) and B̂(t) be the busy time of server in
original and buffered system, respectively, in interval [0, t]. By synchronization of the
interarrival times and service times, it follows that the inequality B(t) ≥ B̂(t) and
the equality

V (t) = W (t) +B(t) = Ŵ (t) + B̂(t), t ≥ 0 (5.3.8)

hold, implying Ŵ (t) ≥ W (t). At the same time, the service time of the nth
customer in the buffered system is distributed as Ŝn = Sn + ζon. (Recall that {ζon}
are iid.) It remains to note that for positive recurrence of the buffered system, it is
sufficient to satisfy the following well-known negative drift condition E[Ŝ] < E[τ ] (
see Asmussen [11]). By (5.3.5) and (5.3.7), it is equivalent to

E[Ŝ] =
M∑
k=1

pk
µk

+ max
1≤k≤M

1

λ+ λ
(r)
k

<
1

λ
. (5.3.9)

Since λpk = λk, it is easy to check that (5.3.9) coincides with (5.3.4). Since the
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positive recurrent workload process Ŵ (t) dominates the process W (t), the statement
of Theorem (5.3.2) follows.

Remark 5.3.3. It is easy to see from the proof that the number of customers in the
buffered system dominates the same measure in the original system as well.

We write condition (5.3.4) as

ρ < min
k

(
λ
(r)
k

λ+ λ
(r)
k

)
, (5.3.10)

and compare with the necessary stability condition given in (5.3.3), which can also
be written as

ρ < min
k

(
λ
(r)
k

λk + λ
(r)
k

)
. (5.3.11)

It can be seen that the condition given in (5.3.10) and (5.3.11) are identical as those
given in (4.3.22) and (4.3.23). This is due to the fact that both the conditions given
in this section have been developed for the particular case that bk = 1, k = 1, 2, ...M .

5.4 Some special cases

In this section, we discuss some known particular cases of our model.

Case 1: We first consider a single-server two-way communication system studied
in [61, 69], with a single class of outgoing calls and a single class of incoming calls
with general service time distribution, that is, M = 2, b1 = 1 and b2 = 0 (which
means that λ(r)2 = 0 as well). It then follows from (5.2.1) that C = 1 + ρ2, so that
equations (5.2.2)–(5.2.5) become

P0 =
1− ρ1
1 + ρ2

= 1− Pb,

P
(1)
b = ρ1, P

(2)
b = ρ2

1− ρ1
1 + ρ2

,

P
(1)
0,b =

λ1

λ
(r)
1

ρ

1 + ρ2
,

and P (1)
0,0 =

1− ρ1 − λ1ρ/λ(r)1

1 + ρ2
,
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which are the same as those given in section (4.2), ofcourse with slight changes in
notation.
For such a single-class retrial system, the steady-state distribution and performance
measures are available in an explicit form ( for the specific case that service times are
exponentially distributed, the same have been given in section (4.2)). In particular,
the following expression for the mean stationary orbit queue, E[N1], is derived in
Phung-Duc et al. [65]:

E[N1] = P
(1)
0,0 b (λ1 + λ

(r)
1 )

a− 2 + (ρ1 + θ)(1− b) + ρ1θ(2b− a)

λ1(1− a+ b)2
− ρ

1 + ρ2
, (5.4.1)

where

θ =
λ1

λ1 + µ2

, a =
(λ1 + λ

(r)
1 )(λ1 + µ2) + λ2(λ1 + µ1) + λ

(r)
1 µ1

λ1(λ1 + λ2 + λ
(r)
1 )

, b =
λ
(r)
1 µ1(λ1 + µ2)

λ21(λ1 + λ2 + λ
(r)
1 )

.

In Section 5.5, we use (5.4.1) to verify simulation results.
Case 2: Here, we consider a more complicated model with M = 2, b1 = 1 and

b2 = 1. That is, the model has two classes of incoming calls and no class of outgoing
calls. This case has been treated in Avrachenkov et al. [15] by means of generating
functions and Riemann–Hilbert boundary value technique. The authors obtained the
mean stationary orbit size E[Ni], i = 1, 2 explicitly in terms of complex variable
integrals which, however, required tough numerical analysis. We also note that a
dependence between orbits can be clearly observed from the expressions for E[Ni]

obtained in Avrachenkov et al. [15]. In section (5.5.2), we numerically study this
dependence for the systems with b1 = 1 and b2 ∈ [0, 1].

5.5 Simulation results

In this section, we present the results of some numerical experiments that are
performed to gain deeper insight into the model stability and performance. In the
first experiment, for model validation purpose, we study the convergence of sample
estimates of some measures to their exact theoretical values for which analytical
expressions are available. After validating the model, we perform a study of
dependence of orbits of different classes by means of empirical correlation. Then, in
subsequent experiments, we perform numerical study of some auxiliary performance
measures for busy period, namely, the probability of non-empty/empty orbit together
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Figure 5.1: Estimated vs. exact values
of P0 and P (k)

0,0

D
if
fe
re
n
ce

Figure 5.2: Estimated vs. exact values
of P (k)

b and P (k)
0,b

with busy server. Note that deriving theoretical expressions for these measures seem
to be highly difficult or even impossible. The simulation is based on the discrete event
procedure and is performed using R language [77].

5.5.1 Convergence of performance estimates

In this experiment, we establish the convergence of estimates of those performance
measures for which exact values are available via (5.2.2)–(5.2.5). The single trace of
simulation run is obtained for each value of number of events, N = 10i, for i = 3, . . . , 7.
From each such a trace, estimates of the probabilities P0, Pb, P

(k)
b , P (k)

0,0 , and P
(k)
0,b are

obtained. Absolute difference between these simulated estimates (denoted by ’bar’)
and exact values (obtained from (5.2.2)–(5.2.5)), for a system with M = 2 classes
of customers, is computed, see Fig. 5.1 and 5.2. Values of pi, bi, λ

(r)
i and µi, for

i = 1, 2, are taken arbitrarily. Service times are assumed to be exponential. Note
that we perform multiple experiments for various parameter combinations taken from
the system stability region yielding qualitatively the same results, which are exhibited
in Fig. 5.1 and 5.2. Fig. 5.1 indicates the variation of absolute difference between the
exact and simulated values of P0 and P (k)

0,0 against the variation of logN . It is seen
that the differences fastly converge to zero for large values of logN . Fig. 5.2 displays
the differences for the probabilities P (k)

b and P (k)
0,b . In all cases, simulation illustrates

the validity of theoretical results and, moreover, allows us to select in the subsequent
experiments a valid number of customers required to obtain performance measures
with high accuracy.
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Figure 5.3: Estimate of the orbit
sizes correlation cor(N1, N2) vs. the
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Figure 5.4: Estimates of the mean orbit
sizes E[N1] (solid), E[N2] (dashed) vs.
the probability to join the 2nd orbit b2.

5.5.2 Inter-orbit correlation

To facilitate understanding of the interaction between orbits of different customer
classes (and at the same time following the principle of parsimony), we perform a
numerical study of a model with M = 2 classes of customers. We select a class of
models in such a way that the models studied in Phung-Duc et al. [65] (the model
with b1 = 1 and b2 = 0) and Avrachenkov et al. [15] (the model with b1 = 1 and
b2 = 1) become borderline cases and may be used as additional accuracy checks.

At that, we fix the following characteristics of an M/M/1-type system withM = 2

orbit-queues:

• the arrival rates λ1 = 0.198, λ2 = 0.02;

• the service rates µ1 = 20, µ2 = 0.01;

• the retrial rates λ(r)i = 1, i = 1, 2;

• the probability to join orbit for class-1 customer b1 = 1.

The values are selected in such a way to guarantee sufficient stability condition (5.3.4)
holds true. Note that the model is highly asymmetric: most of arriving customers
belong to class 1 and have relatively small service times, while class-2 customers,
arriving rarely, bring a relatively large amount of work into the system.

In the experiment, we vary the probability b2 in the range (0, 1) with step size 0.05.
In such a case, the leftmost point is related to the single-class two-way communication
model studied in Phung-Duc et al. [65], while the rightmost point is a two-class model
from Avrachenkov et al. [15]. Note that expression (5.4.1) is used as an accuracy
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check. At each such step (with fixed b2), we perform discrete-event simulation of
the model. We use 2 × 107 arrivals and calculate the sample mean estimates of the
orbit-queue sizes ENi, i = 1, 2, and the empirical correlation coefficient of orbit queue
size, cor(N1, N2). The results of simulation are depicted at Figures 5.3 and 5.4. It
is clearly seen that the correlation becomes larger when the probability b2 increases.
One of the possible intuitive explanations of this phenomenon is the appearance of
oscillations of the orbit sizes. A large service time of class-2 customers forces the size
of the 1st orbit to increase. At the same time, a large retrial rate of class-1 customers
forces the 2nd orbit to increase. We also note that similar intermittent behavior of
server state was studied in Phung-Duc et al. [65].

5.5.3 Performance in busy period

In Section (5.2), by regenerative approach, we could derive some basic performance
measures (see (5.2.2)–(5.2.5)), of which the ones given by (5.2.4)–(5.2.5) are related
to an idle server while the concerned orbit queue is non-empty or empty. However, it
is relatively more difficult to obtain explicit expressions for the similar performance
measures associated with a busy server. This difficulty arises from general service
time distribution assumption, as well as complicated interaction of orbits through
server occupation (as discussed in section (5.4)). So, in this experiment we attempt
to perform such a study numerically (thus below we do not distinguish the notation
used for theoretical values and numerical estimates). We are interested in the steady
state probability that the server is busy and the kth orbit is non-empty (empty),
denoted by P (k)

b,b (P (k)
b,0 ). We note that the server busy probability, P (k)

b = P
(k)
b,b + P

(k)
b,0

(for each k) is given by (5.2.3) (this analytical expression may be used as an additional
accuracy check).

First, we discuss the effect of the input rate λ on the probabilities P (k)
b,b and P (k)

b,0 .
In the absence of theoretical expression for these probabilities, here we present how
the estimated values of these measures vary with increasing values of λ by keeping
the probability pi fixed, for M = 2. The simulation run was performed for N = 106

customers by assuming p1 = 0.9, retrial rates λ(r)1 = 1, λ
(r)
2 = 1.5, and bi = 1, i = 1, 2.

Fig. 5.5 depicts the variation of P (k)
b,b , k = 1, 2 and Pb for increasing values of λ for

(standard) Pareto service time (with the density f(x) = αx−α−1, α > 1, x ≥ 1, and
the mean α

α−1), where (per-class) parameters αi are selected in such a way to obtain
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vs. λ (stability threshold indicated by
vertical line at λ = 1/2).

the following service rates

µ1 =
α1 − 1

α1

= 0.8, µ2 =
α2 − 1

α2

= 0.6.

It can be seen that, as λ increases beyond critical threshold (stability boundary)
indicated by vertical line at point 1/2 on Fig. 4, both P (1)

b,b and P (2)
b,b are increasing,

as is the busy probability Pb. Note that the same experiment was conducted with
exponential service times, ceteris paribus. Comparison of the performance measures
(for each λ) to the values obtained for Pareto service times confirms insensitivity of
the considered measures to the service time distribution. However, to save space, we
omit the corresponding graphs.

Since the input rate λ1 is assumed to be significantly larger than λ2, and retrial
as well as service rates for both classes are not significantly different, P (1)

b,b attains
larger values at relatively smaller λ as compared to P

(2)
b,b , see Fig. 5.5. Under the

same assumptions, a similar behaviour can be observed for P (k)
b,0 , k = 1, 2, in Fig. 5.6,

where both measures approach zero for large λ corresponding to unstable system.
In Fig. 5.7, we visualize the dependence of P (i)

b,0 and P (i)
b,b on λ(r), assuming M = 2

and b1 = b2 = 1. In particular, we configure the system in such a way to experience
a transition between the stable and non-stable regimes by modifying λ

(r)
1 , ceteris
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paribus. At that, we study a system with arrival rates λ1 = 0.125 and λ2 = 0.2,
(standard) Pareto service time with service rates µ1 = 0.5 and µ2 = 0.8. Then we
obtain equal traffic intensities

ρ1 = ρ2 = 0.25

for both classes of customers. To satisfy (5.3.1) for class -2 customers, we set λ(r)2 =

0.4. At the same time, we vary λ
(r)
1 in the interval [0.05, 1.5] with step size 0.01,

making a single simulation run for each such value, and performing estimation after
N = 107 events. It is easy to calculate that ρ = 0.5 and see that (5.3.1) holds for
λ
(r)
1 > 0.125. Indeed, Fig. 5.7 shows that P (1)

b,0 > 0 only for λ(r)1 > 0.125. In fact,
P

(1)
b,0 = 0 can be treated as instability of the 1st orbit. This again shows that in

fact (5.3.1) must be stability criterion of the model.
We also note the nonlinear dependence of P (2)

b,0 and P
(2)
b,b on the 1st orbit retrial

rate. Moreover, it is interesting to point out the steep increase in P (i)
b,b , i = 1, 2, in the

instability region of λ(r)1 (see Fig. 5.7, right). The reason for this shape is the increase
in server load caused by increase in retrial rate from an overloaded orbit 1 (as long
as λ(r)1 < λ1 = 0.125).

Moreover, we note that if the input rate approaches the stability boundary λ(r)1 =

0.125, then the inequality P (1)
b,0 < P

(1)
b,b holds good, whereas for larger values of λ(r)1

(say, λ(r)1 > 0.5) the inequality is reversed, P (1)
b,0 > P

(1)
b,b .

Also, at λ(r)1 = 0.25, in addition to the assumption ρ1 = ρ2, the following symmetry
holds

λ1

λ
(r)
1

=
λ2

λ
(r)
2

,
µ1

λ
(r)
1

=
µ2

λ
(r)
2

.

One can expect that in this case the corresponding performance measures for both
orbits must be equal, and indeed, Fig. 5.7 shows that in this case P (1)

b,0 = P
(2)
b,0 and

P
(1)
b,b = P

(2)
b,b .

To illustrate our results, we simulate two-orbit system. The main motivation for
our simulation study is to learn the behaviour of the performance measures P (k)

b,0 and
P

(k)
b,b , k = 1, 2, which are associated with busy server states, against the variation of

some system parameters. As we mentioned above, deriving the analytic expressions
for these measures is almost impossible unlike in the case of similar measures
associated with idle server states. From the simulation study (see Figure 5.5 and 5.6),
we could see that when the total input rate λ increases, both P (1)

b,b and P (2)
b,b also display

the same trend and once the input rate crosses the critical threshold for maintaining
the stability of the system, both these measures move to 1 rapidly irrespective of the
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Figure 5.7: Variation of estimated values of P (i)
b,0 , P

(i)
b,b , i = 1, 2, for two-class model

vs. retrial rate λ(r)1 .

kind of the service time distribution. As a result, both P (1)
b,0 and P (2)

b,0 move to 0 under
the unstable regime. From the same situation, it also could be observed that when the
class-1 input rate λ1 is significantly larger than λ2, ceteris paribus, P

(1)
b,b attains larger

value at relatively smaller λ as compared to P (2)
b,b . In another simulation experiment,

as seen from Figure 5.7, behaviour of the same performance measures have been
studied against the variation of the class-1 retrial rate λ(r)1 . Selection of the range of
variation of λ(r)1 has been made in such a way that the system transits from unstable
to stable regime while λ(r)1 moves over this range. It can be seen that P (1)

b,0 > 0 only
in the stable region. Also, the non-linear dependence of P (2)

b,0 and P
(2)
b,b on λ

(r)
1 has

been observed. Moreover, when the input rate approaches the least value of λ(r)1 that
assures the system stability, the inequality P (1)

b,0 < P
(1)
b,b appears to hold good.
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Chapter 6

Two-way Communication Orbit
Queues with Server Vacation

6.1 Introduction

Queuing models with server vacations have been introduced to model situations where
the server may not be available for serving customers over some intervals of time.
Server vacations may happen due to server failure, lack of work, or another task
being assigned to the server. In these systems, the server is not always available to
serve its customers. Many researchers like Doshi [30] ,Takagi [71], Tian and Zhang [72]
conducted excellent surveys on server vacation models in the queueing literature. An
M/M/1 retrial queue with working vacations has been studied by Do [29]. Li et
al. [51] considered a discrete time Geo/Geo/1 retrial queue with working vacations
and vacation interruption. Liu and Song [52] analysed a system by incorporating
non-persistent customers into the Geo/Geo/1 retrial queue with working vacations.

In this chapter, we consider a two-way communication retrial model with multiple
classes of incoming and outgoing calls. The server goes for vacation if no request from
outgoing or incoming call is received during a random amount of time. These kind
of situations arise in many practical cases where, due to excess work load, systems
struggle to find any time to spend for their periodical maintenance. The novelty of this
work is the inclusion of multiple classes of calls in each stream (outgoing/incoming)
requiring class dependent service times. Even though many of the underlying random
variates are assumed as exponential, this model can be considered as a general one
that can be used for performance analysis of several systems dealing with various
classes of customers of heterogeneous nature where the server can opt for vacation if
no request from any of this class is pending. Moreover, unlike in many other models,
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here we could use a blend of regenerative and matrix analytic approaches to derive
the steady state distribution and some system performance measures explicitly.

The structure of this chapter is as follows: In section (6.2), first we describe a
model by considering a common orbit and exponential distributional assumptions
for service times for both types of calls, and derive the steady state distribution by
using matrix analytic approach. After this, regenerative approach is used to find the
boundary state probabilities even for the case with general service time assumptions
and class dependent orbits for calls, and then we combine both matrix analytic and
regenerative approaches for the computation of steady state distribution. Section
(6.3) provides various interesting measures which are useful in the system performance
analysis. Theoretical results are numerically illustrated in section (6.4).

6.2 Mathematical model

6.2.1 Matrix analytic approach

We consider a single server system in which incoming customers (calls) arrive
according to a Poisson rule with rate λ. Upon seeing an idle server, an arriving
customer defines its class as i with probability pi, where i = 1, 2, ...,M and occupies
the server for an exponential amount of time with rate µi. On the other hand, if the
customer meets a busy server, it joins an orbit. The customer at the head of the orbit
queue retries to get the server in a gap of exponential amount of time with rate λ(r)

and upon successful attempt, the customer defines its class as i with probability p(r)i ,

where i = 1, 2, ...,M. Also, there are L classes of internal calls (outgoing calls) -which
are assumed to station at a virtual pool and are originating from an infinite source-
and the one at the head of the pool is assumed to make attempts to capture the server
in a gap of exponential amount of time with rate γ. The successful outgoing call will
be of jth type with probability qj, where

∑L
j qj = 1 and its service time is exponential

with rate ηj, j = 1, 2, ..., L. If the server is idle for an exponential amount of time
having mean 1

α
and there is no attempt either from incoming or outgoing customers

to get the server during this period, then the server decides to go for vacation and
the vacation period is exponentially distributed with parameter β. After vacation,
the server will again come back to the idle state.

In relation with the events stated above, let the state variables at time t be defined
as follows:
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• N(t), the number of customers in the orbit.

• J(t), the state of the server.

More specifically,

J(t) =


0 if the server is idle

1, ...,M if busy with serving M type of incoming calls
M + 1,M + 2, ..,M + L if busy with serving L type of outgoing calls

M + L+ 1 if the server is in vacation mode

Then the process {X(t) = (N(t), J(t)); t ≥ 0} is a continuous time
Markov chain with state space E = ∪iEi, where Ei = {0, 1, 2, 3, ...} × {i}, for
i = 0, 1, 2, . . . ,M + L+ 1.

Since N(t) may jump only one step in an infinitesimal time interval, the process
{X(t), t ≥ 0} is a QBD (Quasi bith-death process) with the generator

Q =



A00 A0 0 0 0 · · · 0

A2 A1 A0 0 0 · 0

0 A2 A1 A0 0 · 0

0 0 A2 A1 A0 · 0

· · · · · · ·
· · · · · · ·


.

The matrices appeared in Q are explicitly expressed as follows:

A0 =


0 0 . . . 0

0 λ . . . 0
...

... . . . ...
0 0 . . . λ

 ;

A2 =


0 λ(r)p

(r)
1 . . . λ(r)p

(r)
M 0 . . . 0

0 0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 0 . . . 0

 ;
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A1 =



−λ− λ(r) − γ − α λp1 λp2 . . . λpM γq1 . . . γqL α

µ1 −λ− µ1 0 . . . . . . . . . . . . 0 0

µ2 0 −λ− µ2 . . . . . . . . . . . . 0 0
...

...
...

. . .
...

...
...

...
µM 0 0 . . . −λ− µM . . . . . . 0 0

η1 0 0 . . . 0 −λ− η1 . . . 0 0
...

...
...

...
...

...
. . .

... 0

ηL 0 0 . . . 0 0 . . . −λ− ηL 0

β 0 0 . . . 0 0 . . . 0 −λ− β



;

A00 = A1 +


λ(r) 0 . . . 0

0 0 . . . 0
...

...
...

...
0 0 . . . 0

 .

For representational convenience, we make the following notations:

ρi = λ
pi
µi
, i = 1, . . . ,M ; ρ =

M∑
i=1

ρi;

ρ
(r)
i = λ(r)

p
(r)
i

µi
, i = 1, . . . ,M ; ρ(r) =

M∑
i=1

ρ
(r)
i ;

ρ
(o)
j = γ

qj
ηj
, j = 1, . . . , L; ρ(o) =

L∑
j=1

ρ
(o)
j ;

ρ(v) =
α

β
.

A necessary and sufficient condition for ergodicity of the above QBD process is
(Neuts [63] )

αA0e < αA2e, (6.2.1)
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where α is the solution of the system{
αA = 0

αe = 1

and A = A0 + A1 + A2.

By solving the above system, we obtain
α = α0(1, ρ1+ρ

(r)
1 , ..., ρM+ρ

(r)
M , ρ

(o)
1 , ..., ρ

(o)
L , ρ(v)), where α0 = (1+ρ+ρ(r)+ρ(o)+ρ(v))−1.

So, the stability condition (6.2.1) yields

λ(ρ+ ρ(r) + ρ(o) + ρ(v)) < λ(r). (6.2.2)

This gives a second degree polynomial in λ, which has two distinct roots. The
rightmost value of λ that offers the stability of the system is

λ∗ =
−ρ(r) − ρ(o) − ρ(v) +

√
(ρ(r) + ρ(o) + ρ(v))2 + 4λ(r)

∑M
i=1

pi
µi

2
∑M

i=1
pi
µi

(6.2.3)

and hence the system is stable for λ < λ∗ with the other parameters fixed.
Here, the matrix A2 can be written in the form A2 = cr, where c = (λ(r), 0, 0, ..., 0)

is a column vector and r = (0, p
(r)
1 , .., p

(r)
M , 0, 0, .., 0) is a row vector. Then the first

passage time matrix G and the rate matrix R are obtained explicitly as

G = er (6.2.4)

and

R = −A0(A1 + A0G)−1. (6.2.5)

For more details on G and R, refer Latouche and Ramaswami [50]. Then the
steady state vector π = (π0, π1, ..), where πi = (πi,0, πi,1, ...., πi,M+L+1) represents
the probability that the orbit is having i customers with the server being any of the
said states, assumes the matrix geometric form

πi = π0R
i, i ≥ 1 (6.2.6)
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and π0 is obtained from the system{
π0(A

00 +RA2) = 0
π0(I −R)−1e = 1

However, computation of π0 demands matrix inversion which, in general, is
complicated. To avoid this situation, we consider the following equivalent system{

ξ0(I −R)(A00 +RA2) = 0
ξ0e = 1

by taking ξ0 = π0(I −R)−1. Once ξ0 is computed, π0 = ξ0(I −R).
It is to be noted that ξ0 =

∑
i πi so that the jth component of ξ0 represents the

steady state probability that the server is in state j, for j = 0, 1, 2, . . . ,M +L+1. Let
us write ξ0 = (P0, P

(r)
1 , P

(r)
2 , . . . , P

(r)
M , P

(o)
M+1, P

(o)
M+2, . . . , P

(o)
M+L, P

(v)
M+L+1). In the next

section, we compute the probability measures appeared in ξ0 by using regenerative
approach, which in turn can be used for computing ξ0 explicitly for the particular
case that M = 1.

6.2.2 Regenerative approach

In this section, instead of exponential distribution assumptions taken for service times
of incoming and outgoing calls, we go with general service time assumptions. Also,
we assume that after finding a busy server, a class k incoming call joins a k-orbit
(unlike the assumption in section (6.2.1), where we use a common orbit for all classes
of incoming calls). Regenerative approach helps us to compute the components of
ξ0 (they themselves serve as important measures to assess the system performance)
even in the said non-Markovian set up. More precisely, in connection with service
times, we make the following assumptions (note that the other assumptions remain
as such):

• Class i incoming calls possess independent and identically distributed (iid)
service times {S(i)

n , n ≥ 1} following a general distribution with mean E[S(i)] =
1
µi

< ∞. Upon meeting a busy server, each of the class k customer joins a
k-orbit.

• Class j outgoing calls have generally distributed iid service times {Z(j)
n : n ≥ 1}

with rate ηj = 1/E[Z(j)].
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In connection with the interval [0, t), denote by

• H ′(t), the summary work arrived in the system.That is, the total service time
required for all incoming and outgoing customers.

• H(t), the summary work of all incoming arrivals.

• Hk(t), the summary work of class-k incoming customers so that

H(t) =
∑
k

Hk(t).

• B(t), the busy time of the server (including the service of outgoing calls).

• V (t), the vacation time of the server.

• I(t), the idle time of the server.
Then

B(t) + V (t) + I(t) = t.

At time instant t−, let

• Nk(t) be the number of orbital customers of class k and Wk(t) be the remaining
workload for the entire k class customers present in the system. Since we are
talking about a stable system, as t → ∞,

∑M
k=1Wk(t) = o(t) with probability

1.

• S(t) be the remaining service time of the customer who is undergoing service.
Therefore, S(t) = 0 if the server is free at t−. Also, as t→∞, S(t) = o(t) with
probability 1.

Now, we consider the basic summary queue size process defined as follows:

Y (t) =
∑
k

Nk(t) + C(t), t ≥ 0,

where C(t) ∈ {0, 1} is defined as the number of customers attended by the server at
instant t−.
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Let {tn, n ≥ 1} be the instants of the superposed arrival process, which is Poisson
with rate λ. At instant tn, denote Y (tn) = Yn, n ≥ 1.
We assume that at instant t=0, the first customer breaks the idle state of the system.
So, put T0 = 0 and define

Tn+1 = inf
(
tk > Tn : Yk = 0

)
, n ≥ 0.

{Tn} are classical regeneration points of the basic process Y , which is having
Tn+1 − Tn as regeneration periods. We know that the regenerative process {Y (t)} is
positive recurrent if the mean generic period E[T ] (where T is the generic period)is
finite and there exists the weak limit Y (t) ⇒ Y , which denotes the number of
incoming customers in the system in the stationary scenario.

Denote Ĝj(t) as the renewal process generated by the attempts of class-j outgoing
calls in interval [0, t). Let {v(j)i , i ≥ 1} be the renewal points of the process Ĝj and let
Ĉ

(j)
i = C(v

(j)
i − 0) be the state of server when the ith j-outgoing call (in the renewal

process Ĝj) appears, j = 1, . . . , L. Therefore, in the interval [0, t), the number of
successful attempts made by class-j customers is

Gj(t) =

Ĝj(t)∑
i=1

1(Ĉ
(j)
i = 0),

where 1 stands for the indicator function. Let Uj(t) be the summary work generated
by class-j outgoing calls in interval [0, t). Then

Uj(t) =

Ĝj(t)∑
i=1

1(Ĉ
(j)
i = 0)Z

(j)
i , j = 1, . . . , L.

Denote by Ak(t) the number of class-k arrivals in interval [0, t).
Then, we have the balance equation

H ′(t) =
M∑
k=1

Ak(t)∑
i=1

S
(k)
i +

L∑
j=1

Uj(t) = S(t) +
M∑
k=1

Wk(t) + t− I(t)− V (t)(6.2.7)
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As t→∞, for each k, with probability 1

1

t

Ak(t)∑
i=1

S
(k)
i =

1

Ak(t)

Ak(t)∑
i=1

S
(k)
i ·

Ak(t)

t
→ ρk. (6.2.8)

It is to be noted that ρ(o)j = γqj/ηj, j = 1, . . . , L and ρ(v) = α/β. Then, by the
strong law of large numbers and PASTA property

Uj(t)

t
→ P0ρ

(o)
j ,

V (t)

t
→ P0ρ

(v) (6.2.9)

so that

lim
t→∞

H ′(t)

t
= ρ+

L∑
j=1

ρ
(o)
j P0 = ρ+ ρ(o)P0

and

lim
t→∞

1

t

(
S(t) +

M∑
k=1

Wk(t) + t− I(t)− V (t)
)

= 1− P0 − P0ρ
(v).

Hence from the above two expressions and eqn (6.2.7), we get

P0 =
1− ρ

1 + ρ(o) + ρ(v)
. (6.2.10)

Now, by the definition of Uj(t) and by eqns (6.2.9) and (6.2.10), we have

P
(o)
M+j = lim

t→∞

Uj(t)

t
=

1− ρ
1 + ρ(o) + ρ(v)

ρ
(o)
j for j = 1, 2, . . . , L (6.2.11)

and

P
(v)
M+L+1 = lim

t→∞

V (t)

t
=

1− ρ
1 + ρ(o) + ρ(v)

ρ(v). (6.2.12)

Also, related to [0, t), define

• Bk(t), the busy time of the server caused by k-type incoming customers and

• Sk(t), the remaining service time of the kth type incoming customer who is
undergoing service. Therefore, Sk(t) = 0 if the server is not busy with the said
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type of customer at t−. Also, as t→∞, Sk(t) = o(t) with probability 1.

Then

Hk(t) =

Ak(t)∑
i=1

S
(k)
i = Sk(t) +Wk(t) +Bk(t).

Now, with probability 1

lim
t→∞

Bk(t)

t
= P

(r)
k

so that

P
(r)
k = ρk for k = 1, 2, ..,M. (6.2.13)

Thus, eqns (6.2.10)- (6.2.13) help us to compute ξ0 and hence π0 and the stationary
vector π explicitly in the particular case that M = 1.
In the next section, we are computing some important measures that are useful for
system performance analysis.

6.3 Some important system performance measures

Here, we discuss some important performance measures that are associated with the
Markovian model considered in section (6.2.1).

6.3.1 First passage time and busy period analysis of the orbit

In our model, we define the busy period of the orbit as the time between the epoch at
which an incoming unit comes to the system with busy server and empty orbit and
the first epoch thereafter at which the orbit becomes empty again.To study this busy
period, we first introduce the matrix G(k, x). The entry Gjj′(k, x) is the conditional
probability that the Markov process starts from the state (i, j) at time t = 0 and
reaches the level i− 1 by entering the state (i− 1, j′) for the first time no later than
time x after exactly k transitions to the left. This is defined for x ≥ 0, k ≥ 1, 0 ≤
j, j′ ≤M + L+ 1. Let

G∗(z, s) =
∞∑
k=1

zk
∫ ∞
0

e−sxdG(k, x).
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Then, G∗(z, s) is the minimal non-negative solution to the equation

zA2 − (sI − A1)G
∗(z, s) + A0G

∗2(z, s) = 0

for s > 0 and 0 < z < 1.

Let τ be the first passage time from level i to level i − 1. It is well known that (see
Neuts [63]) lim

z→1,s→0
G∗(z, s) = G = (Gjj′) where

Gjj′ = P{τ <∞ and (N(t), J(t) = (i− 1, j′)|(N(0), J(0) = (i, j)}.

Define m̃ as a row vector of dimension M + L + 2 with elements m1j, where m1j

is the mean first passage time from level i (given that the first passage time started
in (i, j)) to the level i− 1, i ≥ 1.
Then

m̃ = − ∂

∂s
G∗(z, s)|s=0,z=1

= −(A1 + A0(I +G))−1e.

Similarly, define matrices G∗(0,0)(z, s), m̃1
(0,0) for the first passage time from the

level zero to itself. Then

G∗(0,0)(z, s) = (sI − A00)−1A0G
∗(z, s)

and
m̃∗(0,0) = −A00−1

(A0m̃+ e).

A detailed analysis of the similar kind can also be seen in Neuts [63] and Deepak et
al. [25]. Busy period of the orbit is basically the first passage time from the level 1
to the level 0. So, if we know the G matrix, which is given by eqn (6.2.4), all these
measures can be computed directly.

6.3.2 Distribution of the number of orbital incoming calls

served during system busy period

We define the system busy period as the duration of time between the epoch at which
the server becomes busy (either by incoming or outgoing call), after it becomes idle
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and orbit is empty, and the epoch at which the orbit becomes empty again. In order
to distinguish this from orbit busy period, we call this as system busy period even
though it is not the system busy period in strict sense.
Here, we are using the method presented in Amador and Artalejo [1] and Deepak [26]
to derive the distributions of some important random variates. Let tn be the nth
service completion epoch (including both incoming as well as outgoing calls) and in
be the number of orbital customers at tn + 0. Then, {in : n ≥ 1} is a Markov chain
having non-negative integers as states. Let Pil be the one-step transition probability
of the above Markov chain. That is,

Pil = Pr{in+1 = l|in = i}.

Then

P0l =
M∑
i=1

λpi
λ+ γ + α

∫ ∞
0

e−λu(λu)l

l!
µie
−µiudu+

L∑
j=1

γqj
λ+ γ + α

∫ ∞
0

e−λu(λu)l

l!
ηje
−ηjudu

=
λ

λ+ γ + α

M∑
i=1

(
λ

λ+ µi

)l+1

piµi +
γ

λ(λ+ γ + α)

L∑
j=1

(
λ

λ+ ηj

)l+1

qjηj. (6.3.1)

Let the random variable B denote the number of orbital units that are taken
into service by retrial during a system busy period and xi(b) be the probability that
exactly b ≥ 0 orbital customers are getting service during the remaining busy period,
given that a service has just been completed leaving behind i customers in the orbit,
where 0 ≤ i ≤ b. Clearly, x0(b) = δb0, b ≥ 0 and for i ≥ 1,

xi(b) =
M∑
k=1

λpk
λ+ γ + α + λ(r)

∫ ∞
0

b∑
l=i

e−λu(λu)l−i

(l − i)!
µke

−µkudu xl(b)

+
M∑
k=1

λ(r)p
(r)
k

λ+ γ + α + λ(r)

∫ ∞
0

b−1∑
l=i−1

e−λu(λu)l−i+1

(l − i+ 1)!
µke

−µkudu xl(b− 1)

+
L∑
j=1

γqj
λ+ γ + α + λ(r)

∫ ∞
0

b∑
l=i

e−λu(λu)l−i

(l − i)!
ηje
−ηjudu xl(b).
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Therefore

xi(b) =
1

λ+ λ(r) + γ + α

[ M∑
k=1

b∑
l=i

(
λ

λ+ µk

)l−i+1

pkµkxl(b)

+
M∑
k=1

b−1∑
l=i−1

λl−i+1

(λ+ µk)l−i+2
λ(r)p

(r)
k µkxl(b− 1) +

L∑
j=1

b∑
l=1

λl−i

(λ+ ηj)l−i+1
γqjηjxl(b)

]
.

To derive xi(b), we consider the time between two successive service completion epochs
where after a service completion, the idle time of the server will be broken either by
primary arrivals or retrials or outgoing customers. In all cases, we keep count of the
number of incoming arrivals occurring during the subsequent service time, so that
the total number of orbital customers never reaches b + 1 at this service completion
epoch.
The above system of equations can be written in the following matrix form

Mbxb = Bbx̃b−1,

where xb = (x1(b), x2(b), ..., xb(b))
′ , x̃b−i = (δbi, xb−i)

′ Mb = (mil), Bb = (bil) are
square matrices of order b defined by

mil =


0 if 1 ≤ l < i ≤ b

(λ+ γ + α + λ(r))− λ
∑M

k=1
pkµk
λ+µk

− γ
∑L

j=1
qjηj
λ+ηj

if l = i

−
∑M

k=1
λl−i+1pkµk
(λ+µk)l−i+1 −

∑L
j=1

λl−iγqjηj
(λ+ηj)l−i+1 if 1 ≤ i ≤ l ≤ b

bil =

{
0 if 1 ≤ l < i ≤ b∑M

k=1

λl−iλ(r)p
(r)
k µk

(λ+µk)l−i+1 if 1 ≤ i ≤ l ≤ b

This equation can be solved recursively to get xb, which eventually can be used to
get the distribution of B by the formula

P{B = b} =
b∑
i=0

P0ixi(b).
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6.3.3 Distribution of the number of incoming calls that are

taken into service upon their arrival during system busy

period

Let A be the number of incoming calls that are directly taken into service upon
their arrival during a system busy period. To derive A, we need to approximate our
model with the one having finite orbit capacity say, W. Let yi(a) be the probability
that a number of incoming customers get the service, upon their arrival, during the
remaining busy period, given that a service has just been completed leaving behind i
customers in the orbit, for 0 ≤ i ≤ W . Then

P{A = a} =
W∑
i=0

P0iyi(a) =
W−1∑
i=0

P0iyi(a) + (1−
W−1∑
i=0

P0i)yW (a).

Now, for 1 ≤ i ≤ W,

yi(0) =
M∑
k=1

λ(r)p
(r)
k

λ+ γ + α + λ(r)

∫ ∞
0

W∑
l=i−1

e−λu(λu)l−i+1

(l − i+ 1)!
µke

−µkuyl(0)du

+
L∑
j=1

γqj
λ+ γ + α + λ(r)

∫ ∞
0

W∑
l=i

e−λu(λu)l−i

(l − i)!
ηje
−ηjuyl(0)du

=
1

λ+ λ(r) + γ + α

[ M∑
k=1

W∑
l=i−1

λl−i+1

(λ+ µk)l−i+2
λ(r)p

(r)
k µkyl(0)

+
L∑
j=1

W∑
l=i

λl−i

(λ+ ηj)l−i+1
γqjηjyl(0)

]
.

For a ≥ 1,

yi(a) =
M∑
k=1

λpk
λ+ γ + α + λ(r)

∫ ∞
0

W∑
l=i

e−λu(λu)l−i

(l − i)!
µke

−µkuyl(a− 1)du

+
M∑
k=1

λ(r)p
(r)
k

λ+ γ + α + λ(r)

∫ ∞
0

W∑
l=i−1

e−λu(λu)l−i+1

(l − i+ 1)!
µke

−µkuyl(a)du

+
L∑
j=1

γqj
λ+ γ + α + λ(r)

∫ ∞
0

W∑
l=i

e−λu(λu)l−i

(l − i)!
ηje
−ηjuyl(a)du
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=
1

λ+ λ(r) + γ + α

[ M∑
k=1

W∑
l=i

(
λ

λ+ µk

)l−i+1

pkµkyl(a− 1)

+
M∑
k=1

W∑
l=i−1

λl−i+1

(λ+ µk)l−i+2
λ(r)p

(r)
k µkyl(a)

+
L∑
j=1

W∑
l=1

λl−i

(λ+ ηj)l−i+1
γqjηjyl(a)

]

and y0(a) = δa0.
The above system of equations can be written in the matrix form

M ′y(0) = b(0)

M ′y(a) = B′y(a− 1), a ≥ 1

where y(a) = (y1(a), y2(a), ..., yW (a))′. M ′ = (m′il), and B′ = (b′il) are square matrices
of order W defined by

m′il =



0 if 1 ≤ l < i− 1 & i ≤ W

−
∑M

k=1

λ(r)p
(r)
k µk

λ+µk
if l = i− 1

(λ+ γ + α + λ(r))− λλ(r)
∑M

k=1

p
(r)
k µk

(λ+µk)2
− γ

∑L
j=1

qjηj
λ+ηj

if l = i

−λl−i+1λ(r)
∑M

k=1

p
(r)
k µk

(λ+µk)l−i+2 − γλl−i
∑L

j=1
qjηj

(λ+ηj)l−i+1 if 1 ≤ i ≤ l ≤ W

b′il =

{
0 if 1 ≤ l < i ≤ W∑M

k=1
λl−i+1pkµk
(λ+µk)l−i+1 if 1 ≤ i ≤ l ≤ W

Also,
b(0) =

( ∑M
k=1

λ(r)p
(r)
k µk

λ+µk
0 · · · 0

)′
.

To derive yi(a), we use a similar argument that we have used for deriving xi(b).
Depending on the type of the customer which breaks the idle period of the server,
the index a will fall to different levels and by keeping track of the number of primary
customers arriving in the concerned service period, it is possible to write the system
as above. From the above system of equations, it can be seen that the value of y(a)

is completely determined by the value of y(a − j) for j = 1, 2, ...a. We will start
with y0(a) = δa0 and then we can solve for y(0), which can be used later for the
computation of y(1) and so on. In this manner, for any a, y(a) can be computed
recursively.
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6.3.4 Distribution of number of retrials made by an orbital

customer

Here, we use the method proposed in Artalejo and Lopez-Herrero [6], which deals
with the distribution of number of retrials in M/G/1 and M/M/C set up, to compute
the same distribution in our model. Let R̂ denotes the number of retrials made by
a tagged incoming customer in a system having a single class of incoming and a
single class of outgoing calls. Let us define zrl,(n,i) as the probability that the tagged
customer produces exactly r retrials before getting the server successfully, given that
it has accumulated l retrials and the present state of the system is (n, i).
Then

P{R̂ = 0} =
∞∑
n=0

πn,0, (6.3.2)

and P{R̂ = r} =
∞∑
n=0

3∑
i=1

πn,0z
r
l,(i,n), r ≥ 1. (6.3.3)

Now,

zrr−1,(n,0) =
λ

λ+ λ(r) + λ(o) + α
zrr−1,(n,1) +

λ(o)

λ+ λ(r) + λ(o) + α
zrr−1,(n,2)

+
α

λ+ λ(r) + λ(o) + α
zrr−1,(n,3) +

λ(r)

λ+ λ(r) + λ(o) + α
(6.3.4)

and

zrr−1,(n,i) =
gi

λ+ λ(r) + gi
zrr−1,(n,0) +

λ

λ+ λ(r) + gi
zrr−1,(n+1,i).

(6.3.5)

For l < r − 1,

zrl,(n,0) =
λ

λ+ λ(r) + λ(o) + α
zrl,(n,1) +

λ(o)

λ+ λ(r) + λ(o) + α
zrl,(n,2)

+
α

λ+ λ(r) + λ(o) + α
zrl,(n,3)

(6.3.6)
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and

zrl,(n,i) =
gi

λ+ λ(r) + gi
zrl,(n,0) +

λ

λ+ λ(r) + gi
zrl,(n+1,i)

+
λ(r)

λ+ λ(r) + gi
zrl+1,(n,i).

(6.3.7)

Note that in the above i = 1, 2, 3 and g1 = µ, g2 = γ, g3 = β.

To derive formulas (6.3.4)– (6.3.7), we don’t consider all vain retrials because
they neither affect the event under the study nor modify the current system state.
We develop a method to find an approximate solution based on the truncation of the
orbit capacity as say, W .
Then, equation (6.3.4) and (6.3.6) remain valid for 1 ≤ n ≤ W for the truncated
model, but (6.3.2),(6.3.3) , (6.3.5),(6.3.7) assume the following:

P{R̂W = 0} =
W−1∑
n=0

πn,0, (6.3.8)

P{R̂W = r} =
W−1∑
n=0

3∑
i=1

πn,0z
r
l,(i,n), r ≥ 1 (6.3.9)

zrr−1,(n,i) =
gi

λ(1− δnW ) + λ(r) + gi
zrr−1,(n,0) +

λ(1− δnW )

λ(1− δnW ) + λ(r) + gi
zrr−1,(n+1,i)(6.3.10)

zrl,(n,i) =
gi

λ(1− δnW ) + λ(r) + gi
zrl,(n,0) +

λ(1− δnW )

λ(1− δnW ) + λ(r) + gi
zrl,(n+1,i)

+
λ(r)

λ(1− δnW ) + λ(r) + gi
zrl+1,(n,i).

(6.3.11)

The finite system (6.3.4),(6.3.6), (6.3.10) and (6.3.11)can be solved numerically.
For a detailed discussion on the computation, refer Artalejo and Lopez-Herrero [6].
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6.3.5 Waiting time distribution of an orbital call

In this section, we derive the distribution of the time since an incoming customer joins
the orbit till it is served. Let us assume that the customer joins the orbit say, as the
rth unit, r > 0 . Now, we consider the Markov process {Z(t) = (R(t), J(t)) : t ≥ 0},
where R(t) is the rank of the said customer at time t and J(t) is the same as defined
earlier. The rank R(t) of the call is assumed to be i if it is the ith unit in the orbital
queue at time t.

The infinitesimal generator Q̄ of {Z(t) : t ≥ 0} assumes the form

Q̄ =



r r − 1 r − 2 · · · 1 0

r A1 A2 0 · · · 0 0

r − 1 0 A1 A2 · · · 0 0

r − 2 0 0 A1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
2 0 0 0 · · · A2 0

1 0 0 0 · · · A1 A2

0 0 0 0 · · · 0 0


where

A1 = A1 +



0

λ

λ
. . .

λ


.

That is,

Q̄ =

[
T T

0

0 0

]
,

where T is the part of the generator corresponding to the transient states
r, r − 1, ...., 1.

Hence, the waiting time W of a customer that joins the orbit as the rth unit is a PH
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(γ′, T ) variate with γ′ = (πr, 0, 0, ...., 0), where πr = πr/πre and πr is given by eqn
(6.2.6). Using the uniformization approach, the distribution function of the waiting
time of such a customer can be computed as

W (t) = 1−
∞∑
k=0

e−ct
(ct)k

k!
γP̄ e,

where
P̄ =

1

c
T + I,

and c is the maximum of the negative of the diagonal elements of T .
Also, the average waiting time of such a customer

E[W ] = γ(−T )−1e = −πr(A1)
−1[I +

r−1∑
i=1

(−A2(A1)
−1)i].

6.4 Numerical illustration

In order to illustrate the performance of the system, we are presenting some numerical
results based on our theoretical findings. In table 6.1, we exhibit the variation of
different probability measures in connection with various server status, while λ varies
over the stability region. For the illustration, we take M = 1, µ = 1.5, λ(r) = 3.5,
L = 2, γ = 8, q = [3/4, 1/4] , η = [1, 0.7], α = 0.6 and β = 1. Then the system will
be stable for λ < 0.2920. From table 6.1, it is clear that the server idle probability P0

λ 0.1 0.15 0.2 0.25 0.29

P0 0.0893 0.0861 0.0829 0.0797 0.0711
P

(r)
1 0.0667 0.1000 0.1333 0.1667 0.1933
P

(o)
2 0.5355 0.5164 0.4973 0.4781 0.4628
P

(o)
3 0.2550 0.2459 0.2368 0.2277 0.2204
P

(v)
4 0.0535 0.0516 0.0497 0.0478 0.0463

Table 6.1: Various probability measures

decreases while the inflow rate increases whereas P (r)
1 , the probability that the server

is busy with an incoming call increases as λ increases. Also, it can be seen that the
proportion of time the server is busy with either class of outgoing calls as well as on
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vacation decrease against the increase in the inflow rate λ.
Table 6.2 displays how mean first passage times vary against the variation of λ over
the stable region. Here, we take M = 2, p = [0.25, 0.75], µ = [1.5, 1.2], λ(r) = 3.5,
p(r) = [0.5, 0.5], L = 2, γ = 4, q = [1/3, 2/3] , η = [1, 0.7], α = 0.6 and β = 0.8. This
system will be stable for λ < 0.3963.

λ = 0.05 m̃ 2.2444 3.0147 3.2073 3.3999 3.8951 3.6888
m̃∗(0,0) 27.3422 27.2026 27.1768 27.1545 27.1124 27.1273

λ = 0.1 m̃ 2.6122 3.5212 3.7485 3.9757 4.5600 4.3166
m̃∗(0,0) 16.2754 16.1033 16.0810 16.0663 13.0616 13.0577

λ = 0.15 m̃ 3.125 4.2333 4.5093 4.7852 5.4948 5.1992
m̃∗(0,0) 13.2632 13.0484 13.0313 13.0270 13.0688 13.0426

λ = 0.20 m̃ 3.9106 5.3083 5.6577 6.0072 6.9057 6.5313
m̃∗(0,0) 12.6533 12.3774 12.3682 12.3789 12.4871 12.4289

λ = 0.25 m̃ 5.2256 7.1180 7.5911 8.0642 9.2808 8.7739
m̃∗(0,0) 13.7400 13.3654 13.3695 13.4048 13.6191 13.5099

λ = 0.3 m̃ 7.9064 10.8069 11.5321 12.2572 14.1219 13.3449
m̃∗(0,0) 17.5614 16.9912 17.0222 17.1066 17.5295 17.3205

λ = 0.35 m̃ 16.3772 22.4627 23.9841 25.5054 29.4175 27.7875
m̃∗(0,0) 31.5465 30.3684 30.4840 30.7210 31.7892 31.2720

Table 6.2: First passage time

It can be seen that the mean first passage time from a level i to i − 1 increases
significantly while λ increases. This is due to the fact that an increase in λ results
in an increase in the probability that the server engages primary arrival so that the
mean time taken for reduction in orbit size will be more. Also, it can be seen that for
a particular value of λ, the mean first passage time by starting from server idle state
is less compared to starting from other server states.

Probability mass function of the number of orbital calls served during system busy
period is shown in table 6.3. The same system parameters specified in connection
with table 6.2 are considered here. It can be seen that with increase in values of λ,
P{B = b} increases and for a specific value of λ, probability of serving more and
more number of customer decreases.

By taking the same system parameters that have been considered in connection
with the previous two tables, along with W = 20, we compute the probability
distribution of the number of direct primary calls served during system busy period
and the results are displayed in table 6.4. Corresponding to increase in values of λ,
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λ=0.1 0.15 0.2 0.25 0.3 0.35

B=1 0.0383 0.0494 0.0571 0.0624 0.0660 0.0681
2 0.0036 0.0063 0.0090 0.0113 0.0132 0.0148
3 4.01 ∗ 10−4 9.67 ∗ 10−4 0.0017 0.0024 0.0031 0.0038
4 4.8 ∗ 10−5 1.5 ∗ 10−4 3.34 ∗ 10−4 5.5 ∗ 10−4 8.002 ∗ 10−4 0.0010

Table 6.3: Distribution of the number of orbital calls served during busy period

proportion of the time the busy period expires without serving a direct primary call
decreases whereas, probability of serving increasing number of such calls decreases
for a particular value of λ.

λ=0.1 0.15 0.2 0.25 0.3 0.35

A=0 0.7563 0.7107 0.6708 0.6358 0.6051 0.5781
1 0.0400 0.0526 0.0618 0.0686 0.0731 0.0769
2 5.44 ∗ 10−4 0.0011 0.0017 0.0023 0.0029 0.0035
3 7.52 ∗ 10−6 2.21 ∗ 10−5 4.59 ∗ 10−5 7.89 ∗ 10−5 1.202 ∗ 10−4 1.689 ∗ 10−4

4 1.0529 ∗ 10−7 4.6 ∗ 10−7 1.29 ∗ 10−6 2.78 ∗ 10−6 5.0759 ∗ 10−6 8.28 ∗ 10−6

Table 6.4: Distribution of the number of incoming calls that are taken into service
upon arrival

Table 6.5 exhibits the probability mass function of the number of retrials made
by an orbital customer during its stay in the system. Here, we take M = 1, µ = 1.5,
λ(r) = 3.5, L = 1, γ = 3, η = 0.8, α = 0.7, β = 1 and W = 50 so that the system will
be stable for λ < 0.4922.

λ=0.1 0.2 0.3 0.4

r=0 0.1713 0.1590 0.1468 0.1345
1 0.0887 0.0928 0.0968 0.1008
2 0.0215 0.0283 0.0350 0.0416
3 0.0110 0.0163 0.0216 0.0267
4 0.0069 0.0108 0.0147 0.0185

Table 6.5: Distribution of the number of retrials

It is evident from table 6.5 that the proportion of time an incoming call leaves
the system, after service, without making a single retrial, decreases with the increase
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in values of λ. Also, the proportion of time it goes for at least one retrial increases
corresponding to increasing values of λ.

r=2 3 4

t=1 0.0715 0.0087 0.0006
2 0.2215 0.0612 0.0122
3 0.3750 0.1518 0.0475
4 0.5104 0.2607 0.1073
5 0.6229 0.3729 0.1854
6 0.7132 0.4794 0.2741
7 0.7841 0.5752 0.3663
E[W] 4.8059 7.1110 9.4167

Table 6.6: Waiting time distribution of tagged calls

Finally, the probabilities that the waiting times of incoming calls, that join the
orbit at various positions, do not exceed some pre-determined values are computed
and shown in table 6.6. Here, we take λ = 0.3924, M = 1, µ = 1.5, λ(r) = 3.5, L = 2,
γ = 3.5 ,q = [3/4, 1/4], η = [1, 0.7], α = 0.6, β = 1. Note that the last row of the
table represents average waiting times of such tagged calls.
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Summary of the Thesis and Future Work

Here, we discuss the summary of each chapter of this thesis. In chapter 2,
we analysed a queuing model to study the characteristics of nodes in a wireless
network under the standard BEB contention resolution scheme. Modelled as a
QBD process, we used the standard matrix analytic approach to study some of the
important characteristics of the model, which can be used for performance evaluation
of the actual system. We have used these results to compute the joint system
size distribution at nodes in some multi-hop wireless network. Extensive simulation
analysis was performed to establish the validity of our theoretical results and some
real life data was used for numerical illustration.

In chapter 3, we considered a wireless sensor network model that handles
emergency packets. As in chapter 2, we used standard BEB scheme for collision
avoidance, but took exponential distribution assumptions for channel busy and idle
periods. We derived distribution of time since a packet is ready for transmission till
it is successfully transmitted/ timed out, and the probability mass function of the
number of collisions experienced by packet.

In chapter 4, we developed a single server multi-class orbit queue with Poisson
inputs, constant retrial rates and general service times. Both service times and
(exponential) retrial times were assumed to be class-dependent. Different variants
of the model by considering presence/absence of outgoing calls were analysed by
using regenerative approach and coupling method. Besides, we demonstrated how a
combination of the matrix-analytic and regenerative methods simplifies the analysis
of a Markovian model of the considered system.

In chapter 5, we carried out performance analysis of the multi-class orbit queue
model with Poisson inputs, constant retrial rates, general service times and balking
customers. This model could be viewed as a generalisation of the one studied in
the previous chapter. We derived necessary stability condition and for the variant
with persistent customers, derived sufficient stability condition also. We applied the
discrete-event simulation method to validate our analytical results.

In chapter 6, we considered a single server retrial model with two streams of
incoming and outgoing calls. Once the server becomes idle, if neither an incoming nor
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an outgoing call is being turned up for exponential amount of time, the server goes for
vacation and vacation time was assumed to be exponential. Arrivals of incoming calls
obey Poisson law. Service times and retrial times were class-dependent exponential
variates. Matrix analytic method and regenerative approach were used to analyse the
system.

As future work, we can extend the two way communication models and their
general version studied here to those having additional features such as service
interruption, ambiguity in class determination for arriving customers etc. In this
thesis, all the models, in the context of two-way communication systems, are involving
single server only. So, these models could be extended to multi-server set up by
assuming more general processes such as Markovian Arrival processes (MAP) to
catch the correlation between inter-arrival times. Similarly, analysis of a multi-server
model with more general phase type distribution assumptions, instead of exponential
distribution assumptions, is another potential problem that we can explore. In the
case of wireless network systems, faster changes, regarding nature of packets, traffic,
routing etc, have been happening on a regular basis. Modelling such kind of systems
by incorporating these changes in a realistic manner, and analysing them to get a
clear picture of system performance once they would be practically implemented, is
another future challenge.
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